区分 II 型和 S 型异质结材料:全面回顾

IF 7.5 Q1 CHEMISTRY, PHYSICAL
D. Salazar-Marín , Goldie Oza , J.A. Díaz Real , A. Cervantes-Uribe , H. Pérez-Vidal , M.K. Kesarla , J.G. Torres Torres , S. Godavarthi
{"title":"区分 II 型和 S 型异质结材料:全面回顾","authors":"D. Salazar-Marín ,&nbsp;Goldie Oza ,&nbsp;J.A. Díaz Real ,&nbsp;A. Cervantes-Uribe ,&nbsp;H. Pérez-Vidal ,&nbsp;M.K. Kesarla ,&nbsp;J.G. Torres Torres ,&nbsp;S. Godavarthi","doi":"10.1016/j.apsadv.2023.100536","DOIUrl":null,"url":null,"abstract":"<div><p>In the evolving field of photocatalysis, heterojunction photocatalysts, especially Type II and S-scheme, the latter being also known as direct-Z scheme heterojunctions, are gaining increasing recognition for their pivotal role in enhancing photocatalytic efficiency. These heterojunctions, characterized by similar band alignments but distinct charge transfer mechanisms, play a crucial role in facilitating enhanced charge separation and transfer. This comprehensive review delves into the experimental methodologies essential for characterizing these heterojunctions, with a focus on understanding their unique charge transfer mechanisms. Key methods such as Electron Spin Resonance (ESR), radical trapping experiments, Photoluminescence (PL) probing, Nitro Blue Tetrazolium (NBT) transformation, Surface Photovoltage Spectroscopy (SPS), photodeposition of metals, and in-situ X-ray Photoelectron Spectroscopy (<em>in-situ</em> XPS) analysis are discussed in detail. Each technique is presented with necessary guidelines and accompanying information to ensure their appropriate and effective use in pinpointing the specifics of charge transfer processes. The review concludes that the right selection of experimental techniques is crucial in understanding the charge transfer mechanism in staggered type heterojunctions and achieving further advancements in the field of photocatalysis.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001708/pdfft?md5=c8989c9b32a20c122acd5ed30dd5f081&pid=1-s2.0-S2666523923001708-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Distinguishing between type II and S-scheme heterojunction materials: A comprehensive review\",\"authors\":\"D. Salazar-Marín ,&nbsp;Goldie Oza ,&nbsp;J.A. Díaz Real ,&nbsp;A. Cervantes-Uribe ,&nbsp;H. Pérez-Vidal ,&nbsp;M.K. Kesarla ,&nbsp;J.G. Torres Torres ,&nbsp;S. Godavarthi\",\"doi\":\"10.1016/j.apsadv.2023.100536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the evolving field of photocatalysis, heterojunction photocatalysts, especially Type II and S-scheme, the latter being also known as direct-Z scheme heterojunctions, are gaining increasing recognition for their pivotal role in enhancing photocatalytic efficiency. These heterojunctions, characterized by similar band alignments but distinct charge transfer mechanisms, play a crucial role in facilitating enhanced charge separation and transfer. This comprehensive review delves into the experimental methodologies essential for characterizing these heterojunctions, with a focus on understanding their unique charge transfer mechanisms. Key methods such as Electron Spin Resonance (ESR), radical trapping experiments, Photoluminescence (PL) probing, Nitro Blue Tetrazolium (NBT) transformation, Surface Photovoltage Spectroscopy (SPS), photodeposition of metals, and in-situ X-ray Photoelectron Spectroscopy (<em>in-situ</em> XPS) analysis are discussed in detail. Each technique is presented with necessary guidelines and accompanying information to ensure their appropriate and effective use in pinpointing the specifics of charge transfer processes. The review concludes that the right selection of experimental techniques is crucial in understanding the charge transfer mechanism in staggered type heterojunctions and achieving further advancements in the field of photocatalysis.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001708/pdfft?md5=c8989c9b32a20c122acd5ed30dd5f081&pid=1-s2.0-S2666523923001708-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在不断发展的光催化领域,异质结光催化剂,特别是 II 型和 S 型(后者也被称为直接-Z 型异质结),因其在提高光催化效率方面的关键作用而日益得到认可。这些异质结具有相似的能带排列,但电荷转移机制各不相同,在促进电荷分离和转移方面发挥着至关重要的作用。本综述深入探讨了表征这些异质结所必需的实验方法,重点是了解它们独特的电荷转移机制。文中详细讨论了电子自旋共振(ESR)、自由基捕获实验、光致发光(PL)探测、硝基蓝四氮唑(NBT)转化、表面光电压光谱(SPS)、金属的光沉积以及原位 X 射线光电子能谱(in-situ XPS)分析等关键方法。每种技术都附有必要的指导原则和相关信息,以确保在精确定位电荷转移过程的具体细节时适当而有效地使用这些技术。综述的结论是,正确选择实验技术对于理解交错型异质结中的电荷转移机制以及进一步推动光催化领域的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguishing between type II and S-scheme heterojunction materials: A comprehensive review

In the evolving field of photocatalysis, heterojunction photocatalysts, especially Type II and S-scheme, the latter being also known as direct-Z scheme heterojunctions, are gaining increasing recognition for their pivotal role in enhancing photocatalytic efficiency. These heterojunctions, characterized by similar band alignments but distinct charge transfer mechanisms, play a crucial role in facilitating enhanced charge separation and transfer. This comprehensive review delves into the experimental methodologies essential for characterizing these heterojunctions, with a focus on understanding their unique charge transfer mechanisms. Key methods such as Electron Spin Resonance (ESR), radical trapping experiments, Photoluminescence (PL) probing, Nitro Blue Tetrazolium (NBT) transformation, Surface Photovoltage Spectroscopy (SPS), photodeposition of metals, and in-situ X-ray Photoelectron Spectroscopy (in-situ XPS) analysis are discussed in detail. Each technique is presented with necessary guidelines and accompanying information to ensure their appropriate and effective use in pinpointing the specifics of charge transfer processes. The review concludes that the right selection of experimental techniques is crucial in understanding the charge transfer mechanism in staggered type heterojunctions and achieving further advancements in the field of photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信