{"title":"高连接图的计数和共因矩阵","authors":"Dániel Garamvölgyi , Tibor Jordán , Csaba Király","doi":"10.1016/j.jctb.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, which verifies a case of a conjecture of Kriesell.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Count and cofactor matroids of highly connected graphs\",\"authors\":\"Dániel Garamvölgyi , Tibor Jordán , Csaba Király\",\"doi\":\"10.1016/j.jctb.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, which verifies a case of a conjecture of Kriesell.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623001120\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了两种定义在图 G 边集上的矩阵:计数矩阵 Mk,ℓ(G),其中独立性由涉及参数 k 和 ℓ 的稀疏性计数定义;C21-协因矩阵 C(G),其中独立性由 G 的协因矩阵中的线性独立性定义。我们证明,对于每一对 (k,ℓ),如果 G 具有足够高的连通性,那么对于所有 e∈E(G),G-e 都具有最大秩,并且矩阵 Mk,ℓ(G) 是连通的。这些结果统一并扩展了之前的一些结果,包括纳什-威廉姆斯和图特(k=ℓ=1)以及洛瓦兹和叶米尼(k=2,ℓ=3)的定理。我们还证明,如果 G 的连通性很高,那么 C(G) 的垂直连通性也很高。我们利用这些结果将惠特尼关于 G 的图形矩阵(对应于 M1,1(G))的著名结果推广到所有计数矩阵和 C21 因子矩阵:如果 G 是高度连通的,则计数矩阵 Mk,ℓ(G) 唯一决定 G;同样,如果 G 是 14 连通的,则其 C21 因子矩阵 C(G) 唯一决定 G。我们还推导出了 C21 因子矩阵的 t 折叠联合的类似结果,并用它们证明了每个 24 连接图都有一棵生成树 T,而 G-E(T)是 3 连接的,这验证了克里塞尔猜想的一种情况。
Count and cofactor matroids of highly connected graphs
We consider two types of matroids defined on the edge set of a graph G: count matroids , in which independence is defined by a sparsity count involving the parameters k and ℓ, and the -cofactor matroid , in which independence is defined by linear independence in the cofactor matrix of G. We show, for each pair , that if G is sufficiently highly connected, then has maximum rank for all , and the matroid is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (), and Lovász and Yemini (). We also prove that if G is highly connected, then the vertical connectivity of is also high.
We use these results to generalize Whitney's celebrated result on the graphic matroid of G (which corresponds to ) to all count matroids and to the -cofactor matroid: if G is highly connected, depending on k and ℓ, then the count matroid uniquely determines G; and similarly, if G is 14-connected, then its -cofactor matroid uniquely determines G. We also derive similar results for the t-fold union of the -cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree T for which is 3-connected, which verifies a case of a conjecture of Kriesell.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.