{"title":"高连接图的计数和共因矩阵","authors":"Dániel Garamvölgyi , Tibor Jordán , Csaba Király","doi":"10.1016/j.jctb.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, which verifies a case of a conjecture of Kriesell.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"166 ","pages":"Pages 1-29"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Count and cofactor matroids of highly connected graphs\",\"authors\":\"Dániel Garamvölgyi , Tibor Jordán , Csaba Király\",\"doi\":\"10.1016/j.jctb.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, which verifies a case of a conjecture of Kriesell.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"166 \",\"pages\":\"Pages 1-29\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623001120\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623001120","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了两种定义在图 G 边集上的矩阵:计数矩阵 Mk,ℓ(G),其中独立性由涉及参数 k 和 ℓ 的稀疏性计数定义;C21-协因矩阵 C(G),其中独立性由 G 的协因矩阵中的线性独立性定义。我们证明,对于每一对 (k,ℓ),如果 G 具有足够高的连通性,那么对于所有 e∈E(G),G-e 都具有最大秩,并且矩阵 Mk,ℓ(G) 是连通的。这些结果统一并扩展了之前的一些结果,包括纳什-威廉姆斯和图特(k=ℓ=1)以及洛瓦兹和叶米尼(k=2,ℓ=3)的定理。我们还证明,如果 G 的连通性很高,那么 C(G) 的垂直连通性也很高。我们利用这些结果将惠特尼关于 G 的图形矩阵(对应于 M1,1(G))的著名结果推广到所有计数矩阵和 C21 因子矩阵:如果 G 是高度连通的,则计数矩阵 Mk,ℓ(G) 唯一决定 G;同样,如果 G 是 14 连通的,则其 C21 因子矩阵 C(G) 唯一决定 G。我们还推导出了 C21 因子矩阵的 t 折叠联合的类似结果,并用它们证明了每个 24 连接图都有一棵生成树 T,而 G-E(T)是 3 连接的,这验证了克里塞尔猜想的一种情况。
Count and cofactor matroids of highly connected graphs
We consider two types of matroids defined on the edge set of a graph G: count matroids , in which independence is defined by a sparsity count involving the parameters k and ℓ, and the -cofactor matroid , in which independence is defined by linear independence in the cofactor matrix of G. We show, for each pair , that if G is sufficiently highly connected, then has maximum rank for all , and the matroid is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (), and Lovász and Yemini (). We also prove that if G is highly connected, then the vertical connectivity of is also high.
We use these results to generalize Whitney's celebrated result on the graphic matroid of G (which corresponds to ) to all count matroids and to the -cofactor matroid: if G is highly connected, depending on k and ℓ, then the count matroid uniquely determines G; and similarly, if G is 14-connected, then its -cofactor matroid uniquely determines G. We also derive similar results for the t-fold union of the -cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree T for which is 3-connected, which verifies a case of a conjecture of Kriesell.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.