Yueyue Qiang , Hang Wei , Biao Huang , Hongfei Chi , Jianwei Fu
{"title":"姜黄精油与羟丙基-β-环糊精的包合复合物:制备、表征和释放动力学","authors":"Yueyue Qiang , Hang Wei , Biao Huang , Hongfei Chi , Jianwei Fu","doi":"10.1016/j.crfs.2023.100668","DOIUrl":null,"url":null,"abstract":"<div><p>The application of turmeric essential oil (TEO), a natural effective antibacterial agent, in food preservation is limited due to high volatility and low stability. This study aimed to improve its stability and release behavior by synthesizing TEO/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex (IC) in a saturated aqueous solution. An orthogonal experimental design was used to determine the optimal process conditions (HP-β-CD to TEO, g/mL), 16:1; stirring speed, 850 r/min; encapsulation time, 2 h), achieving a comprehensive score value of 85.62% for TEO/HP-β-CD-IC. Through comprehensive characterization, the results showed that TEO was completely embedded in HP-β-CD with increased stability. Free TEO exhibited a weight loss of 67.64% between 30 and 300 °C, while TEO/HP-β-CD-IC had a mass loss of only 9.33%. HP-β-CD and TEO/HP-β-CD-IC showed positive ZP values that were 124.76 mV and 132.16 mV, respectively. The release behavior and release kinetics of TEO/HP-β-CD-ICs were also studied, and the results showed that TEO/HP-β-CD-IC release rate increased under higher temperature and relative humidity—consistent with Fick’s diffusion.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"8 ","pages":"Article 100668"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927123002368/pdfft?md5=95cdb823fc8241e4b64ae56ebc13a907&pid=1-s2.0-S2665927123002368-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inclusion complex of turmeric essential oil with hydroxypropyl-β-cyclodextrin: Preparation, characterization and release kinetics\",\"authors\":\"Yueyue Qiang , Hang Wei , Biao Huang , Hongfei Chi , Jianwei Fu\",\"doi\":\"10.1016/j.crfs.2023.100668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of turmeric essential oil (TEO), a natural effective antibacterial agent, in food preservation is limited due to high volatility and low stability. This study aimed to improve its stability and release behavior by synthesizing TEO/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex (IC) in a saturated aqueous solution. An orthogonal experimental design was used to determine the optimal process conditions (HP-β-CD to TEO, g/mL), 16:1; stirring speed, 850 r/min; encapsulation time, 2 h), achieving a comprehensive score value of 85.62% for TEO/HP-β-CD-IC. Through comprehensive characterization, the results showed that TEO was completely embedded in HP-β-CD with increased stability. Free TEO exhibited a weight loss of 67.64% between 30 and 300 °C, while TEO/HP-β-CD-IC had a mass loss of only 9.33%. HP-β-CD and TEO/HP-β-CD-IC showed positive ZP values that were 124.76 mV and 132.16 mV, respectively. The release behavior and release kinetics of TEO/HP-β-CD-ICs were also studied, and the results showed that TEO/HP-β-CD-IC release rate increased under higher temperature and relative humidity—consistent with Fick’s diffusion.</p></div>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"8 \",\"pages\":\"Article 100668\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665927123002368/pdfft?md5=95cdb823fc8241e4b64ae56ebc13a907&pid=1-s2.0-S2665927123002368-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665927123002368\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927123002368","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Inclusion complex of turmeric essential oil with hydroxypropyl-β-cyclodextrin: Preparation, characterization and release kinetics
The application of turmeric essential oil (TEO), a natural effective antibacterial agent, in food preservation is limited due to high volatility and low stability. This study aimed to improve its stability and release behavior by synthesizing TEO/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex (IC) in a saturated aqueous solution. An orthogonal experimental design was used to determine the optimal process conditions (HP-β-CD to TEO, g/mL), 16:1; stirring speed, 850 r/min; encapsulation time, 2 h), achieving a comprehensive score value of 85.62% for TEO/HP-β-CD-IC. Through comprehensive characterization, the results showed that TEO was completely embedded in HP-β-CD with increased stability. Free TEO exhibited a weight loss of 67.64% between 30 and 300 °C, while TEO/HP-β-CD-IC had a mass loss of only 9.33%. HP-β-CD and TEO/HP-β-CD-IC showed positive ZP values that were 124.76 mV and 132.16 mV, respectively. The release behavior and release kinetics of TEO/HP-β-CD-ICs were also studied, and the results showed that TEO/HP-β-CD-IC release rate increased under higher temperature and relative humidity—consistent with Fick’s diffusion.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.