X 连锁智力障碍的基础 USP27X 变异通过不同的机制破坏蛋白质功能。

IF 3.3 2区 生物学 Q1 BIOLOGY
Life Science Alliance Pub Date : 2024-01-05 Print Date: 2024-03-01 DOI:10.26508/lsa.202302258
Intisar Koch, Maya Slovik, Yuling Zhang, Bingyu Liu, Martin Rennie, Emily Konz, Benjamin Cogne, Muhannad Daana, Laura Davids, Illja J Diets, Nina B Gold, Alexander M Holtz, Bertrand Isidor, Hagar Mor-Shaked, Juanita Neira Fresneda, Karen Y Niederhoffer, Mathilde Nizon, Rolph Pfundt, Meh Simon, Apa Stegmann, Maria J Guillen Sacoto, Marijke Wevers, Tahsin Stefan Barakat, Shira Yanovsky-Dagan, Boyko S Atanassov, Rachel Toth, Chengjiang Gao, Francisco Bustos, Tamar Harel
{"title":"X 连锁智力障碍的基础 USP27X 变异通过不同的机制破坏蛋白质功能。","authors":"Intisar Koch, Maya Slovik, Yuling Zhang, Bingyu Liu, Martin Rennie, Emily Konz, Benjamin Cogne, Muhannad Daana, Laura Davids, Illja J Diets, Nina B Gold, Alexander M Holtz, Bertrand Isidor, Hagar Mor-Shaked, Juanita Neira Fresneda, Karen Y Niederhoffer, Mathilde Nizon, Rolph Pfundt, Meh Simon, Apa Stegmann, Maria J Guillen Sacoto, Marijke Wevers, Tahsin Stefan Barakat, Shira Yanovsky-Dagan, Boyko S Atanassov, Rachel Toth, Chengjiang Gao, Francisco Bustos, Tamar Harel","doi":"10.26508/lsa.202302258","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the <i>USP27X</i> gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770416/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>USP27X</i> variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms.\",\"authors\":\"Intisar Koch, Maya Slovik, Yuling Zhang, Bingyu Liu, Martin Rennie, Emily Konz, Benjamin Cogne, Muhannad Daana, Laura Davids, Illja J Diets, Nina B Gold, Alexander M Holtz, Bertrand Isidor, Hagar Mor-Shaked, Juanita Neira Fresneda, Karen Y Niederhoffer, Mathilde Nizon, Rolph Pfundt, Meh Simon, Apa Stegmann, Maria J Guillen Sacoto, Marijke Wevers, Tahsin Stefan Barakat, Shira Yanovsky-Dagan, Boyko S Atanassov, Rachel Toth, Chengjiang Gao, Francisco Bustos, Tamar Harel\",\"doi\":\"10.26508/lsa.202302258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the <i>USP27X</i> gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302258\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302258","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

伴有智力障碍的神经发育障碍(ND/ID)是一类导致终生认知和行为缺陷的异质性疾病,目前尚无确切的治疗方法。X 连锁智障障碍 105(XLID105,#300984;OMIM)是一种由 USP27X 基因半杂合子变异引起的 ND/ID,该基因编码一种蛋白去泛素化酶,在细胞增殖和神经发育中发挥作用。目前,仅有来自两个非亲缘关系家族的四名基因诊断病例,且临床数据有限。此外,该疾病的发病机制尚不清楚。在此,我们报告了来自 9 个家族的 10 名 XLID105 新患者,并确定了基因变异对 USP27X 蛋白功能的影响。我们结合临床遗传学、生物信息学、生物化学和细胞生物学方法,确定了 XLID105 基因变异通过不同的机制改变 USP27X 蛋白的生物学特性,包括改变发育相关的蛋白-蛋白相互作用和去泛素化活性。我们的数据更好地定义了 XLID105 的表型谱,并表明 XLID105 是由 USP27X 功能干扰驱动的。了解 XLID105 变体的致病机制将为 USP27X 生物学提供分子洞察力,并为开发疗法提供可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms.

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信