G. Rustioni, M. Wiedenbeck, N. Miyajima, A. Chanyshev, H. Keppler
{"title":"作为地球最下层地幔主要氮库的菱镁矿","authors":"G. Rustioni, M. Wiedenbeck, N. Miyajima, A. Chanyshev, H. Keppler","doi":"10.7185/geochemlet.2401","DOIUrl":null,"url":null,"abstract":"Ferropericlase (Mg,Fe)O is after bridgmanite the most abundant phase in the lower mantle. The ultralow velocity zones above the core-mantle boundary may contain very Fe-rich magnesiowüstite (Fe,Mg)O, possibly as result of the fractional crystallisation of a basal magma ocean. We have experimentally studied the solubility of nitrogen in the ferropericlase-magnesiowüstite solid solution series as function of iron content. Multi-anvil experiments were performed at 20–33 GPa and 1600–1800 °C in equilibrium with Fe metal. Nitrogen solubility increases from a few tens ppm (μg/g) for Mg-rich ferropericlase to more than 10 wt. % for nearly pure wüstite. Such high solubilities appear to be due to solid solution with NiAs-type FeN. Our data suggest that during fractional crystallisation of a magma ocean, the core-mantle boundary would have become extremely enriched with nitrogen, such that the deep mantle today could be the largest nitrogen reservoir on Earth. The often discussed “subchondritic N/C” ratio of the bulk silicate Earth may be an artefact of insufficient sampling of this deep reservoir.","PeriodicalId":12613,"journal":{"name":"Geochemical Perspectives Letters","volume":"14 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesiowüstite as a major nitrogen reservoir in Earth’s lowermost mantle\",\"authors\":\"G. Rustioni, M. Wiedenbeck, N. Miyajima, A. Chanyshev, H. Keppler\",\"doi\":\"10.7185/geochemlet.2401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferropericlase (Mg,Fe)O is after bridgmanite the most abundant phase in the lower mantle. The ultralow velocity zones above the core-mantle boundary may contain very Fe-rich magnesiowüstite (Fe,Mg)O, possibly as result of the fractional crystallisation of a basal magma ocean. We have experimentally studied the solubility of nitrogen in the ferropericlase-magnesiowüstite solid solution series as function of iron content. Multi-anvil experiments were performed at 20–33 GPa and 1600–1800 °C in equilibrium with Fe metal. Nitrogen solubility increases from a few tens ppm (μg/g) for Mg-rich ferropericlase to more than 10 wt. % for nearly pure wüstite. Such high solubilities appear to be due to solid solution with NiAs-type FeN. Our data suggest that during fractional crystallisation of a magma ocean, the core-mantle boundary would have become extremely enriched with nitrogen, such that the deep mantle today could be the largest nitrogen reservoir on Earth. The often discussed “subchondritic N/C” ratio of the bulk silicate Earth may be an artefact of insufficient sampling of this deep reservoir.\",\"PeriodicalId\":12613,\"journal\":{\"name\":\"Geochemical Perspectives Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Perspectives Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.7185/geochemlet.2401\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Perspectives Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.7185/geochemlet.2401","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Magnesiowüstite as a major nitrogen reservoir in Earth’s lowermost mantle
Ferropericlase (Mg,Fe)O is after bridgmanite the most abundant phase in the lower mantle. The ultralow velocity zones above the core-mantle boundary may contain very Fe-rich magnesiowüstite (Fe,Mg)O, possibly as result of the fractional crystallisation of a basal magma ocean. We have experimentally studied the solubility of nitrogen in the ferropericlase-magnesiowüstite solid solution series as function of iron content. Multi-anvil experiments were performed at 20–33 GPa and 1600–1800 °C in equilibrium with Fe metal. Nitrogen solubility increases from a few tens ppm (μg/g) for Mg-rich ferropericlase to more than 10 wt. % for nearly pure wüstite. Such high solubilities appear to be due to solid solution with NiAs-type FeN. Our data suggest that during fractional crystallisation of a magma ocean, the core-mantle boundary would have become extremely enriched with nitrogen, such that the deep mantle today could be the largest nitrogen reservoir on Earth. The often discussed “subchondritic N/C” ratio of the bulk silicate Earth may be an artefact of insufficient sampling of this deep reservoir.
期刊介绍:
Geochemical Perspectives Letters is an open access, internationally peer-reviewed journal of the European Association of Geochemistry (EAG) that publishes short, highest-quality articles spanning geochemical sciences. The journal aims at rapid publication of the most novel research in geochemistry with a focus on outstanding quality, international importance, originality, and stimulating new developments across the vast array of geochemical disciplines.