Yuanjun Zhang, Dong Wu, Maojie Liao, Xuewen Shi, Feng Chen, Chengguang Zhang, Ming Cai, Jun Tang
{"title":"工具偏心率对水平井声波测井响应的影响:物理模拟实验的启示","authors":"Yuanjun Zhang, Dong Wu, Maojie Liao, Xuewen Shi, Feng Chen, Chengguang Zhang, Ming Cai, Jun Tang","doi":"10.1155/2024/8071443","DOIUrl":null,"url":null,"abstract":"<p>Horizontal wells are extensively utilized in the development of unconventional reservoirs. However, the logging responses and formation evaluation in horizontal wells can be impacted by factors like anisotropy and tool eccentricity. To investigate the influence of tool eccentricity on acoustic logging response, physical simulation experiments of array acoustic logging were conducted in a scaled borehole formation model under different tool eccentricity conditions. The experimental data were analyzed, and the findings revealed that when the receiver array is parallel to the borehole axis, the P-wave slowness and S-wave slowness remain unaffected by tool eccentricity. However, the amplitudes of the P-wave and S-wave decrease significantly with increasing tool eccentricity, following an approximate negative exponential pattern. Additionally, when the transmitter is centered and the receiver array intersects the borehole axis at an angle, the wave velocities increase significantly with tool eccentricity, with the P-wave velocity showing a faster increase. Conversely, when the transmitter is eccentric and the receiver array intersects the borehole axis at an angle, the wave velocity decreases notably with tool eccentricity, and the P-wave velocity decreases even faster. These findings contribute to a better understanding of the impact of tool eccentricity on array acoustic logging response in horizontal wells and offer guidance for developing correction schemes to address this effect.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Tool Eccentricity on Acoustic Logging Response in Horizontal Wells: Insights from Physical Simulation Experiments\",\"authors\":\"Yuanjun Zhang, Dong Wu, Maojie Liao, Xuewen Shi, Feng Chen, Chengguang Zhang, Ming Cai, Jun Tang\",\"doi\":\"10.1155/2024/8071443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Horizontal wells are extensively utilized in the development of unconventional reservoirs. However, the logging responses and formation evaluation in horizontal wells can be impacted by factors like anisotropy and tool eccentricity. To investigate the influence of tool eccentricity on acoustic logging response, physical simulation experiments of array acoustic logging were conducted in a scaled borehole formation model under different tool eccentricity conditions. The experimental data were analyzed, and the findings revealed that when the receiver array is parallel to the borehole axis, the P-wave slowness and S-wave slowness remain unaffected by tool eccentricity. However, the amplitudes of the P-wave and S-wave decrease significantly with increasing tool eccentricity, following an approximate negative exponential pattern. Additionally, when the transmitter is centered and the receiver array intersects the borehole axis at an angle, the wave velocities increase significantly with tool eccentricity, with the P-wave velocity showing a faster increase. Conversely, when the transmitter is eccentric and the receiver array intersects the borehole axis at an angle, the wave velocity decreases notably with tool eccentricity, and the P-wave velocity decreases even faster. These findings contribute to a better understanding of the impact of tool eccentricity on array acoustic logging response in horizontal wells and offer guidance for developing correction schemes to address this effect.</p>\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8071443\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8071443","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
水平井被广泛应用于非常规储层的开发。然而,水平井的测井响应和地层评价会受到各向异性和工具偏心等因素的影响。为了研究工具偏心对声波测井响应的影响,我们在不同工具偏心条件下的缩放井眼地层模型中进行了阵列声波测井物理模拟实验。对实验数据进行分析后发现,当接收器阵列平行于井眼轴线时,P 波慢速和 S 波慢速不受工具偏心的影响。然而,P 波和 S 波的振幅会随着工具偏心率的增加而显著减小,呈现近似负指数模式。此外,当发射器位于中心,而接收器阵列与井眼轴线成一定角度相交时,波速会随着钻具偏心率的增加而显著增加,其中 P 波速度增加较快。相反,当发射器偏心,接收器阵列与井眼轴线成一定角度相交时,波速随工具偏心率的增加而明显减小,P 波速度减小得更快。这些发现有助于更好地理解工具偏心对水平井中阵列声波测井响应的影响,并为制定校正方案解决这一问题提供指导。
Impact of Tool Eccentricity on Acoustic Logging Response in Horizontal Wells: Insights from Physical Simulation Experiments
Horizontal wells are extensively utilized in the development of unconventional reservoirs. However, the logging responses and formation evaluation in horizontal wells can be impacted by factors like anisotropy and tool eccentricity. To investigate the influence of tool eccentricity on acoustic logging response, physical simulation experiments of array acoustic logging were conducted in a scaled borehole formation model under different tool eccentricity conditions. The experimental data were analyzed, and the findings revealed that when the receiver array is parallel to the borehole axis, the P-wave slowness and S-wave slowness remain unaffected by tool eccentricity. However, the amplitudes of the P-wave and S-wave decrease significantly with increasing tool eccentricity, following an approximate negative exponential pattern. Additionally, when the transmitter is centered and the receiver array intersects the borehole axis at an angle, the wave velocities increase significantly with tool eccentricity, with the P-wave velocity showing a faster increase. Conversely, when the transmitter is eccentric and the receiver array intersects the borehole axis at an angle, the wave velocity decreases notably with tool eccentricity, and the P-wave velocity decreases even faster. These findings contribute to a better understanding of the impact of tool eccentricity on array acoustic logging response in horizontal wells and offer guidance for developing correction schemes to address this effect.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.