等边性中的哲恩类

IF 1.2 2区 数学 Q1 MATHEMATICS
Stefan Schwede
{"title":"等边性中的哲恩类","authors":"Stefan Schwede","doi":"10.1017/fms.2023.124","DOIUrl":null,"url":null,"abstract":"<p>We introduce Chern classes in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$U(m)$</span></span></img></span></span>-equivariant homotopical bordism that refine the Conner–Floyd–Chern classes in the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {MU}$</span></span></img></span></span>-cohomology of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$B U(m)$</span></span></img></span></span>. For products of unitary groups, our Chern classes form regular sequences that generate the augmentation ideal of the equivariant bordism rings. Consequently, the Greenlees–May local homology spectral sequence collapses for products of unitary groups. We use the Chern classes to reprove the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbf {MU}$</span></span></img></span></span>-completion theorem of Greenlees–May and La Vecchia.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chern classes in equivariant bordism\",\"authors\":\"Stefan Schwede\",\"doi\":\"10.1017/fms.2023.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce Chern classes in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$U(m)$</span></span></img></span></span>-equivariant homotopical bordism that refine the Conner–Floyd–Chern classes in the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {MU}$</span></span></img></span></span>-cohomology of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$B U(m)$</span></span></img></span></span>. For products of unitary groups, our Chern classes form regular sequences that generate the augmentation ideal of the equivariant bordism rings. Consequently, the Greenlees–May local homology spectral sequence collapses for products of unitary groups. We use the Chern classes to reprove the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240105024122240-0548:S205050942300124X:S205050942300124X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbf {MU}$</span></span></img></span></span>-completion theorem of Greenlees–May and La Vecchia.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.124\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了$U(m)$-等变同调共生中的切尔恩类,它们完善了$B U(m)$的$mathbf {MU}$-同调中的康纳-弗洛伊德-切尔恩类。对于单元群的乘积,我们的切尔恩类形成正则序列,生成等变边界环的增量理想。因此,对于单元群的乘积,格林列斯-梅局部同源性谱序列会坍缩。我们利用这些哲恩类重新证明了格林列斯-梅和拉韦奇亚的 $\mathbf {MU}$-completion 定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chern classes in equivariant bordism

We introduce Chern classes in $U(m)$-equivariant homotopical bordism that refine the Conner–Floyd–Chern classes in the $\mathbf {MU}$-cohomology of $B U(m)$. For products of unitary groups, our Chern classes form regular sequences that generate the augmentation ideal of the equivariant bordism rings. Consequently, the Greenlees–May local homology spectral sequence collapses for products of unitary groups. We use the Chern classes to reprove the $\mathbf {MU}$-completion theorem of Greenlees–May and La Vecchia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信