{"title":"调制空间上的多线性傅里叶积分算子","authors":"Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal","doi":"10.1515/forum-2023-0158","DOIUrl":null,"url":null,"abstract":"In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐒𝐆</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0158_eq_0327.png\" /> <jats:tex-math>{\\mathbf{SG}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-class.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"104 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilinear Fourier integral operators on modulation spaces\",\"authors\":\"Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal\",\"doi\":\"10.1515/forum-2023-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝐒𝐆</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0158_eq_0327.png\\\" /> <jats:tex-math>{\\\\mathbf{SG}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-class.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0158\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multilinear Fourier integral operators on modulation spaces
In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely 𝐒𝐆{\mathbf{SG}}-class.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.