{"title":"昆虫几丁质酶的生物学特性及其在几丁质角质层中的作用","authors":"Dhyeykumar Rabadiya, Matthias Behr","doi":"10.1016/j.ibmb.2024.104071","DOIUrl":null,"url":null,"abstract":"<div><p>Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the <em>Drosophila</em> genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"165 ","pages":"Article 104071"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096517482400002X/pdfft?md5=85d3fcfdac5bb345abb11133b0e1419e&pid=1-s2.0-S096517482400002X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The biology of insect chitinases and their roles at chitinous cuticles\",\"authors\":\"Dhyeykumar Rabadiya, Matthias Behr\",\"doi\":\"10.1016/j.ibmb.2024.104071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the <em>Drosophila</em> genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"165 \",\"pages\":\"Article 104071\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S096517482400002X/pdfft?md5=85d3fcfdac5bb345abb11133b0e1419e&pid=1-s2.0-S096517482400002X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096517482400002X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096517482400002X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
甲壳素是自然界中最常见的生物材料之一。几丁质基质的形成和周转涉及几种酶,用于几丁质的合成、成熟和降解。二十多年前果蝇基因组测序发现,昆虫基因组中含有多种几丁质酶,但为什么昆虫需要这么多不同的几丁质酶却不清楚。在这里,我们重点研究了昆虫 GH18 家族几丁质酶,并讨论了它们参与几丁质基质形成和降解的情况。我们描述了它们在几丁质角质层的时空表达模式、分子功能和生理后果方面的变化。我们通过讨论几丁质酶蛋白结构域结构、底物结合和酶活性,对酶 GH18 结构域、底物结合裂隙和特征性 TIM 管结构进行了结构分析,从而进一步深入了解了几丁质酶的催化机理。
The biology of insect chitinases and their roles at chitinous cuticles
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.