Pratiksha D. Deshmukh, Jenson V. George, Ravidas K. Naik, Shramik M. Patil, Melena A. Soares, Ajay Bhadran, N. Anilkumar
{"title":"南极洲东部普里兹湾陆地快冰融化阶段的浮游植物群落结构","authors":"Pratiksha D. Deshmukh, Jenson V. George, Ravidas K. Naik, Shramik M. Patil, Melena A. Soares, Ajay Bhadran, N. Anilkumar","doi":"10.1016/j.polar.2024.101046","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span><span>Phytoplankton, the primary producers of all aquatic systems, form the base of the marine food web. Any change in the environmental settings of the given ecosystem will affect the phytoplankton community structure of the region. In the present work, water sampling was carried out from the poorly explored </span>polar region, beneath the sea ice during the melting phase of land-fast ice near Indian Antarctic Research Station Bharati in Prydz Bay, East </span>Antarctica. The water samples were analyzed for phytoplankton </span>species diversity, nutrients, temperature, </span>salinity, and Chlorophyll </span><em>a</em> (Chl <em>a</em>). Our observations indicate marked variations in phytoplankton biomass and community. A shift from diatom (<em>Thalassiosira</em> sp., <em>Fragilariopsis</em><span> sp.) to dinoflagellate (</span><em>Protoperidinium</em><span> sp.) community, along with the emergence of grazers was seen by the end of the observation period. The background environmental conditions also showed marked variations, as the concentration of nitrate at 0m depth reduced from 31.8 μM at Obs-1 to a non-detectable limit at Obs-3. Furthermore, at 0m depth, temperature increased from −1.32 °C at Obs-1 to −0.38 °C at Obs-3 while salinity decreased from 34.11 at Obs-1 to 33.68 at Obs-3, thus indicating the melting phase of sea ice from Obs-1 to Obs-3. These observations showed vertical stratification resulting from the basal melting of land-fast sea ice resulted in better availability of light, phytoplankton community change due to nutrient availability/utilization/limitation, followed by the presence of grazer community. This preliminary understanding will serve as a baseline dataset to design the targeted sampling/experiments in the future from the land-fast ice ecosystem.</span></p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"40 ","pages":"Article 101046"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytoplankton community structure during the melting phase of the land-fast ice in Prydz Bay, east Antarctica\",\"authors\":\"Pratiksha D. Deshmukh, Jenson V. George, Ravidas K. Naik, Shramik M. Patil, Melena A. Soares, Ajay Bhadran, N. Anilkumar\",\"doi\":\"10.1016/j.polar.2024.101046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span><span>Phytoplankton, the primary producers of all aquatic systems, form the base of the marine food web. Any change in the environmental settings of the given ecosystem will affect the phytoplankton community structure of the region. In the present work, water sampling was carried out from the poorly explored </span>polar region, beneath the sea ice during the melting phase of land-fast ice near Indian Antarctic Research Station Bharati in Prydz Bay, East </span>Antarctica. The water samples were analyzed for phytoplankton </span>species diversity, nutrients, temperature, </span>salinity, and Chlorophyll </span><em>a</em> (Chl <em>a</em>). Our observations indicate marked variations in phytoplankton biomass and community. A shift from diatom (<em>Thalassiosira</em> sp., <em>Fragilariopsis</em><span> sp.) to dinoflagellate (</span><em>Protoperidinium</em><span> sp.) community, along with the emergence of grazers was seen by the end of the observation period. The background environmental conditions also showed marked variations, as the concentration of nitrate at 0m depth reduced from 31.8 μM at Obs-1 to a non-detectable limit at Obs-3. Furthermore, at 0m depth, temperature increased from −1.32 °C at Obs-1 to −0.38 °C at Obs-3 while salinity decreased from 34.11 at Obs-1 to 33.68 at Obs-3, thus indicating the melting phase of sea ice from Obs-1 to Obs-3. These observations showed vertical stratification resulting from the basal melting of land-fast sea ice resulted in better availability of light, phytoplankton community change due to nutrient availability/utilization/limitation, followed by the presence of grazer community. This preliminary understanding will serve as a baseline dataset to design the targeted sampling/experiments in the future from the land-fast ice ecosystem.</span></p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"40 \",\"pages\":\"Article 101046\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965224000033\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000033","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Phytoplankton community structure during the melting phase of the land-fast ice in Prydz Bay, east Antarctica
Phytoplankton, the primary producers of all aquatic systems, form the base of the marine food web. Any change in the environmental settings of the given ecosystem will affect the phytoplankton community structure of the region. In the present work, water sampling was carried out from the poorly explored polar region, beneath the sea ice during the melting phase of land-fast ice near Indian Antarctic Research Station Bharati in Prydz Bay, East Antarctica. The water samples were analyzed for phytoplankton species diversity, nutrients, temperature, salinity, and Chlorophyll a (Chl a). Our observations indicate marked variations in phytoplankton biomass and community. A shift from diatom (Thalassiosira sp., Fragilariopsis sp.) to dinoflagellate (Protoperidinium sp.) community, along with the emergence of grazers was seen by the end of the observation period. The background environmental conditions also showed marked variations, as the concentration of nitrate at 0m depth reduced from 31.8 μM at Obs-1 to a non-detectable limit at Obs-3. Furthermore, at 0m depth, temperature increased from −1.32 °C at Obs-1 to −0.38 °C at Obs-3 while salinity decreased from 34.11 at Obs-1 to 33.68 at Obs-3, thus indicating the melting phase of sea ice from Obs-1 to Obs-3. These observations showed vertical stratification resulting from the basal melting of land-fast sea ice resulted in better availability of light, phytoplankton community change due to nutrient availability/utilization/limitation, followed by the presence of grazer community. This preliminary understanding will serve as a baseline dataset to design the targeted sampling/experiments in the future from the land-fast ice ecosystem.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.