{"title":"了解颗粒形状、级配和样品密度对颗粒集合体行为的相互影响:DEM 方法","authors":"Peter Adesina, Catherine O’Sullivan, Teng Wang","doi":"10.1007/s10035-023-01383-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the interplay between particle shape, grading and initial sample density, three of the most important factors influencing the mechanical behaviour of sheared granular assemblies. Using the discrete element method (DEM), two-dimensional assemblies of varying initial sample density, particle aspect ratio, <span>\\(AR\\)</span>, and coefficients of uniformity, <span>\\({C}_{u}\\)</span>, were prepared and subjected to drained biaxial shearing until the critical state was reached. We assessed the interplay between each of these parameters by evaluating whether the effect of any given parameter on a mechanical quantity is influenced by any other parameter. Our analyses show that the effect of some of these key parameters on mechanical response, can indeed be influenced by other key parameters. The effect of the particle <span>\\(AR\\)</span> on the peak shear strength for the initially dense assemblies differs when compared with the medium-dense assemblies. The mechanical coordination number of the assemblies at the initial state correlates with the peak strength thereby explaining the interplay between particle <span>\\(AR\\)</span> and initial sample density on the peak shear strength. The linear relationship established between strength and dilatancy for a combination of all assemblies studied suggests that the strength-dilatancy relationship is a unique characteristic of granular assemblies. The dilatancy of the assemblies correlates strongly with the amount of contacts lost during shearing. The interplays found between particle shape, grading and initial sample density in this study show that to develop robust constitutive models for the prediction of granular material behaviour, the effects of multiple factors must be considered.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01383-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the interplay between particle shape, grading and sample density on the behaviour of granular assemblies: A DEM approach\",\"authors\":\"Peter Adesina, Catherine O’Sullivan, Teng Wang\",\"doi\":\"10.1007/s10035-023-01383-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the interplay between particle shape, grading and initial sample density, three of the most important factors influencing the mechanical behaviour of sheared granular assemblies. Using the discrete element method (DEM), two-dimensional assemblies of varying initial sample density, particle aspect ratio, <span>\\\\(AR\\\\)</span>, and coefficients of uniformity, <span>\\\\({C}_{u}\\\\)</span>, were prepared and subjected to drained biaxial shearing until the critical state was reached. We assessed the interplay between each of these parameters by evaluating whether the effect of any given parameter on a mechanical quantity is influenced by any other parameter. Our analyses show that the effect of some of these key parameters on mechanical response, can indeed be influenced by other key parameters. The effect of the particle <span>\\\\(AR\\\\)</span> on the peak shear strength for the initially dense assemblies differs when compared with the medium-dense assemblies. The mechanical coordination number of the assemblies at the initial state correlates with the peak strength thereby explaining the interplay between particle <span>\\\\(AR\\\\)</span> and initial sample density on the peak shear strength. The linear relationship established between strength and dilatancy for a combination of all assemblies studied suggests that the strength-dilatancy relationship is a unique characteristic of granular assemblies. The dilatancy of the assemblies correlates strongly with the amount of contacts lost during shearing. The interplays found between particle shape, grading and initial sample density in this study show that to develop robust constitutive models for the prediction of granular material behaviour, the effects of multiple factors must be considered.</p><h3>Graphic abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01383-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01383-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01383-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the interplay between particle shape, grading and sample density on the behaviour of granular assemblies: A DEM approach
This study investigates the interplay between particle shape, grading and initial sample density, three of the most important factors influencing the mechanical behaviour of sheared granular assemblies. Using the discrete element method (DEM), two-dimensional assemblies of varying initial sample density, particle aspect ratio, \(AR\), and coefficients of uniformity, \({C}_{u}\), were prepared and subjected to drained biaxial shearing until the critical state was reached. We assessed the interplay between each of these parameters by evaluating whether the effect of any given parameter on a mechanical quantity is influenced by any other parameter. Our analyses show that the effect of some of these key parameters on mechanical response, can indeed be influenced by other key parameters. The effect of the particle \(AR\) on the peak shear strength for the initially dense assemblies differs when compared with the medium-dense assemblies. The mechanical coordination number of the assemblies at the initial state correlates with the peak strength thereby explaining the interplay between particle \(AR\) and initial sample density on the peak shear strength. The linear relationship established between strength and dilatancy for a combination of all assemblies studied suggests that the strength-dilatancy relationship is a unique characteristic of granular assemblies. The dilatancy of the assemblies correlates strongly with the amount of contacts lost during shearing. The interplays found between particle shape, grading and initial sample density in this study show that to develop robust constitutive models for the prediction of granular material behaviour, the effects of multiple factors must be considered.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.