论数值扩散性在全球吸积盘动力学 MHD 模拟中的作用

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
C.J. Nixon, C.C.T. Pringle, J.E. Pringle
{"title":"论数值扩散性在全球吸积盘动力学 MHD 模拟中的作用","authors":"C.J. Nixon, C.C.T. Pringle, J.E. Pringle","doi":"10.1017/s002237782300140x","DOIUrl":null,"url":null,"abstract":"<p>Observations, mainly of outbursts in dwarf novae, imply that the anomalous viscosity in highly ionized accretion discs is magnetic in origin and requires that the plasma <span><span><span data-mathjax-type=\"texmath\"><span>${\\beta \\sim 1}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline1.png\"/></span></span>. Until now, most simulations of the magnetic dynamo in accretion discs have used a local approximation (known as the shearing box). While these simulations demonstrate the possibility of a self-sustaining dynamo, the magnetic activity generated in these models saturates at <span><span><span data-mathjax-type=\"texmath\"><span>$\\beta \\gg 1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline2.png\"/></span></span>. This long-standing discrepancy has previously been attributed to the local approximation itself. There have been recent attempts at simulating magnetic activity in global accretion discs with parameters relevant to the dwarf novae. These too find values of <span><span><span data-mathjax-type=\"texmath\"><span>$\\beta \\gg 1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline3.png\"/></span></span>. We speculate that the tension between these models and the observations may be caused by numerical magnetic diffusivity. As a pedagogical example, we present exact time-dependent solutions for the evolution of weak magnetic fields in an incompressible fluid subject to linear shear and magnetic diffusivity. We find that the maximum factor by which the initial magnetic energy can be increased depends on the magnetic Reynolds number as <span><span><span data-mathjax-type=\"texmath\"><span>${\\mathcal {R}}_{m}^{2/3}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline4.png\"/></span></span>. We estimate that current global numerical simulations of dwarf nova discs have numerical magnetic Reynolds numbers around six orders of magnitude less than the physical value found in dwarf nova discs of <span><span><span data-mathjax-type=\"texmath\"><span>${\\mathcal {R}}_{m} \\sim 10^{10}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline5.png\"/></span></span>. We suggest that, given the current limitations on computing power, expecting to be able to compute realistic dynamo action in observable accretion discs using numerical MHD is, for the time being, a step too far.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"23 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the role of numerical diffusivity in MHD simulations of global accretion disc dynamos\",\"authors\":\"C.J. Nixon, C.C.T. Pringle, J.E. Pringle\",\"doi\":\"10.1017/s002237782300140x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observations, mainly of outbursts in dwarf novae, imply that the anomalous viscosity in highly ionized accretion discs is magnetic in origin and requires that the plasma <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\beta \\\\sim 1}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline1.png\\\"/></span></span>. Until now, most simulations of the magnetic dynamo in accretion discs have used a local approximation (known as the shearing box). While these simulations demonstrate the possibility of a self-sustaining dynamo, the magnetic activity generated in these models saturates at <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\beta \\\\gg 1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline2.png\\\"/></span></span>. This long-standing discrepancy has previously been attributed to the local approximation itself. There have been recent attempts at simulating magnetic activity in global accretion discs with parameters relevant to the dwarf novae. These too find values of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\beta \\\\gg 1$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline3.png\\\"/></span></span>. We speculate that the tension between these models and the observations may be caused by numerical magnetic diffusivity. As a pedagogical example, we present exact time-dependent solutions for the evolution of weak magnetic fields in an incompressible fluid subject to linear shear and magnetic diffusivity. We find that the maximum factor by which the initial magnetic energy can be increased depends on the magnetic Reynolds number as <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {R}}_{m}^{2/3}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline4.png\\\"/></span></span>. We estimate that current global numerical simulations of dwarf nova discs have numerical magnetic Reynolds numbers around six orders of magnitude less than the physical value found in dwarf nova discs of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {R}}_{m} \\\\sim 10^{10}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240104165850964-0798:S002237782300140X:S002237782300140X_inline5.png\\\"/></span></span>. We suggest that, given the current limitations on computing power, expecting to be able to compute realistic dynamo action in observable accretion discs using numerical MHD is, for the time being, a step too far.</p>\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s002237782300140x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s002237782300140x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

主要针对矮新星爆发的观测结果表明,高度电离的吸积盘中的异常粘度源于磁性,并要求等离子体的${\beta \sim 1}$。到目前为止,对吸积盘中磁动力的大多数模拟都使用了局部近似(即剪切盒)。虽然这些模拟证明了自持动力的可能性,但这些模型中产生的磁活动在$\beta \gg 1$时达到饱和。这一长期存在的差异以前一直被归因于局部近似本身。最近有人尝试用矮新星的相关参数来模拟全局吸积盘的磁活动。这些尝试也发现了$\beta \gg 1$的值。我们推测,这些模型与观测结果之间的矛盾可能是由数值磁扩散造成的。作为一个教学实例,我们给出了不可压缩流体中弱磁场在线性剪切和磁扩散作用下的演化的精确时变解。我们发现,初始磁能增加的最大系数取决于磁雷诺数,即 ${mathcal{R}}_{m}^{2/3}$。我们估计,目前对矮新星圆盘的全局数值模拟的数值磁雷诺数比在矮新星圆盘中发现的物理值${mathcal {R}}_{m} 小六个数量级左右。\sim 10^{10}$。我们认为,考虑到目前计算能力的限制,期望利用数值 MHD 计算可观测吸积盘中的真实动力作用,目前来看还是太遥远了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the role of numerical diffusivity in MHD simulations of global accretion disc dynamos

Observations, mainly of outbursts in dwarf novae, imply that the anomalous viscosity in highly ionized accretion discs is magnetic in origin and requires that the plasma ${\beta \sim 1}$. Until now, most simulations of the magnetic dynamo in accretion discs have used a local approximation (known as the shearing box). While these simulations demonstrate the possibility of a self-sustaining dynamo, the magnetic activity generated in these models saturates at $\beta \gg 1$. This long-standing discrepancy has previously been attributed to the local approximation itself. There have been recent attempts at simulating magnetic activity in global accretion discs with parameters relevant to the dwarf novae. These too find values of $\beta \gg 1$. We speculate that the tension between these models and the observations may be caused by numerical magnetic diffusivity. As a pedagogical example, we present exact time-dependent solutions for the evolution of weak magnetic fields in an incompressible fluid subject to linear shear and magnetic diffusivity. We find that the maximum factor by which the initial magnetic energy can be increased depends on the magnetic Reynolds number as ${\mathcal {R}}_{m}^{2/3}$. We estimate that current global numerical simulations of dwarf nova discs have numerical magnetic Reynolds numbers around six orders of magnitude less than the physical value found in dwarf nova discs of ${\mathcal {R}}_{m} \sim 10^{10}$. We suggest that, given the current limitations on computing power, expecting to be able to compute realistic dynamo action in observable accretion discs using numerical MHD is, for the time being, a step too far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信