Tae-Geun Ji, Jennifer Sobeck, Changgon Kim, Hojae Ahn, Mingyeong Yang, Taeeun Kim, Sungwook E. Hong, Kei Szeto, Jennifer L. Marshall, Christian Surace, Soojong Pak
{"title":"用于端到端模拟器的 Maunakea 光谱探测器曝光时间计算器:优化摄谱仪设计和观测模拟","authors":"Tae-Geun Ji, Jennifer Sobeck, Changgon Kim, Hojae Ahn, Mingyeong Yang, Taeeun Kim, Sungwook E. Hong, Kei Szeto, Jennifer L. Marshall, Christian Surace, Soojong Pak","doi":"10.1117/1.jatis.10.1.018001","DOIUrl":null,"url":null,"abstract":"The Maunakea Spectroscopic Explorer (MSE) project will provide multi-object spectroscopy in the optical and near-infrared bands using an 11.25-m aperture telescope, repurposing the original Canada–France–Hawaii Telescope site. MSE will observe 4332 objects per single exposure with a field of view of 1.5 square degrees, utilizing two spectrographs with low-moderate (R∼3000, 6000) and high (R≈30,000) spectral resolution. In general, an exposure time calculator (ETC) is used to estimate the performance of an observing system by calculating the signal- to-noise ratio (S/N) and exposure time. We present the design of the MSE ETC, which has four calculation modes (S/N, exposure time, S/N trend with wavelength, and S/N trend with magnitude) and incorporates the MSE system requirements as specified in the conceptual design. The MSE ETC currently allows for user-defined inputs of the target AB magnitude, water vapor, air mass, and sky brightness AB magnitude (additional user inputs can be provided depending on the computational mode). The ETC is built using Python 3.7 and features a graphical user interface that allows for cross-platform use. The development process of the ETC software follows an Agile methodology and utilizes the unified modeling language diagrams to visualize the software architecture. We also describe the testing and verification of the MSE ETC.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maunakea Spectroscopic Explorer exposure time calculator for end-to-end simulator: to optimizing spectrograph design and observing simulation\",\"authors\":\"Tae-Geun Ji, Jennifer Sobeck, Changgon Kim, Hojae Ahn, Mingyeong Yang, Taeeun Kim, Sungwook E. Hong, Kei Szeto, Jennifer L. Marshall, Christian Surace, Soojong Pak\",\"doi\":\"10.1117/1.jatis.10.1.018001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Maunakea Spectroscopic Explorer (MSE) project will provide multi-object spectroscopy in the optical and near-infrared bands using an 11.25-m aperture telescope, repurposing the original Canada–France–Hawaii Telescope site. MSE will observe 4332 objects per single exposure with a field of view of 1.5 square degrees, utilizing two spectrographs with low-moderate (R∼3000, 6000) and high (R≈30,000) spectral resolution. In general, an exposure time calculator (ETC) is used to estimate the performance of an observing system by calculating the signal- to-noise ratio (S/N) and exposure time. We present the design of the MSE ETC, which has four calculation modes (S/N, exposure time, S/N trend with wavelength, and S/N trend with magnitude) and incorporates the MSE system requirements as specified in the conceptual design. The MSE ETC currently allows for user-defined inputs of the target AB magnitude, water vapor, air mass, and sky brightness AB magnitude (additional user inputs can be provided depending on the computational mode). The ETC is built using Python 3.7 and features a graphical user interface that allows for cross-platform use. The development process of the ETC software follows an Agile methodology and utilizes the unified modeling language diagrams to visualize the software architecture. We also describe the testing and verification of the MSE ETC.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.10.1.018001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.018001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Maunakea Spectroscopic Explorer exposure time calculator for end-to-end simulator: to optimizing spectrograph design and observing simulation
The Maunakea Spectroscopic Explorer (MSE) project will provide multi-object spectroscopy in the optical and near-infrared bands using an 11.25-m aperture telescope, repurposing the original Canada–France–Hawaii Telescope site. MSE will observe 4332 objects per single exposure with a field of view of 1.5 square degrees, utilizing two spectrographs with low-moderate (R∼3000, 6000) and high (R≈30,000) spectral resolution. In general, an exposure time calculator (ETC) is used to estimate the performance of an observing system by calculating the signal- to-noise ratio (S/N) and exposure time. We present the design of the MSE ETC, which has four calculation modes (S/N, exposure time, S/N trend with wavelength, and S/N trend with magnitude) and incorporates the MSE system requirements as specified in the conceptual design. The MSE ETC currently allows for user-defined inputs of the target AB magnitude, water vapor, air mass, and sky brightness AB magnitude (additional user inputs can be provided depending on the computational mode). The ETC is built using Python 3.7 and features a graphical user interface that allows for cross-platform use. The development process of the ETC software follows an Agile methodology and utilizes the unified modeling language diagrams to visualize the software architecture. We also describe the testing and verification of the MSE ETC.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.