通过双视角自监督学习克服生物动态成像的光子限制和运动伪影

IF 15.7 Q1 OPTICS
Binglin Shen, Chenggui Luo, Wen Pang, Yajing Jiang, Wenbo Wu, Rui Hu, Junle Qu, Bobo Gu, Liwei Liu
{"title":"通过双视角自监督学习克服生物动态成像的光子限制和运动伪影","authors":"Binglin Shen, Chenggui Luo, Wen Pang, Yajing Jiang, Wenbo Wu, Rui Hu, Junle Qu, Bobo Gu, Liwei Liu","doi":"10.1186/s43074-023-00117-0","DOIUrl":null,"url":null,"abstract":"Visualizing rapid biological dynamics like neuronal signaling and microvascular flow is crucial yet challenging due to photon noise and motion artifacts. Here we present a deep learning framework for enhancing the spatiotemporal relations of optical microscopy data. Our approach leverages correlations of mirrored perspectives from conjugated scan paths, training a model to suppress noise and motion blur by restoring degraded spatial features. Quantitative validation on vibrational calcium imaging validates significant gains in spatiotemporal correlation (2.2×), signal-to-noise ratio (9–12 dB), structural similarity (6.6×), and motion tolerance compared to raw data. We further apply the framework to diverse in vivo experiments from mouse cerebral hemodynamics to zebrafish cardiac dynamics. This approach enables the clear visualization of the rapid nutrient flow (30 mm/s) in microcirculation and the systolic and diastolic processes of heartbeat (2.7 cycle/s), as well as cellular and vascular structure in deep cortex. Unlike techniques relying on temporal correlations, learning inherent spatial priors avoids motion-induced artifacts. This self-supervised strategy flexibly enhances live microscopy under photon-limited and motion-prone regimes.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"32 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surmounting photon limits and motion artifacts for biological dynamics imaging via dual-perspective self-supervised learning\",\"authors\":\"Binglin Shen, Chenggui Luo, Wen Pang, Yajing Jiang, Wenbo Wu, Rui Hu, Junle Qu, Bobo Gu, Liwei Liu\",\"doi\":\"10.1186/s43074-023-00117-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualizing rapid biological dynamics like neuronal signaling and microvascular flow is crucial yet challenging due to photon noise and motion artifacts. Here we present a deep learning framework for enhancing the spatiotemporal relations of optical microscopy data. Our approach leverages correlations of mirrored perspectives from conjugated scan paths, training a model to suppress noise and motion blur by restoring degraded spatial features. Quantitative validation on vibrational calcium imaging validates significant gains in spatiotemporal correlation (2.2×), signal-to-noise ratio (9–12 dB), structural similarity (6.6×), and motion tolerance compared to raw data. We further apply the framework to diverse in vivo experiments from mouse cerebral hemodynamics to zebrafish cardiac dynamics. This approach enables the clear visualization of the rapid nutrient flow (30 mm/s) in microcirculation and the systolic and diastolic processes of heartbeat (2.7 cycle/s), as well as cellular and vascular structure in deep cortex. Unlike techniques relying on temporal correlations, learning inherent spatial priors avoids motion-induced artifacts. This self-supervised strategy flexibly enhances live microscopy under photon-limited and motion-prone regimes.\",\"PeriodicalId\":93483,\"journal\":{\"name\":\"PhotoniX\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhotoniX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43074-023-00117-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-023-00117-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于光子噪声和运动伪影的存在,可视化神经元信号传导和微血管流动等快速生物动态至关重要,但也极具挑战性。在此,我们提出了一种深度学习框架,用于增强光学显微镜数据的时空关系。我们的方法利用共轭扫描路径中镜像视角的相关性,通过训练模型来抑制噪声和运动模糊,从而恢复退化的空间特征。振动钙成像的定量验证表明,与原始数据相比,该方法在时空相关性(2.2 倍)、信噪比(9-12 dB)、结构相似性(6.6 倍)和运动耐受性方面都有显著提高。我们进一步将该框架应用于从小鼠脑血流动力学到斑马鱼心脏动力学的各种体内实验。通过这种方法,微循环中的快速营养流(30 毫米/秒)、心脏搏动的收缩和舒张过程(2.7 个周期/秒)以及深层皮质中的细胞和血管结构都可以清晰地可视化。与依赖时间相关性的技术不同,学习固有的空间先验可以避免运动引起的伪影。这种自我监督策略能在光子受限和运动易发的情况下灵活地增强实时显微镜技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surmounting photon limits and motion artifacts for biological dynamics imaging via dual-perspective self-supervised learning
Visualizing rapid biological dynamics like neuronal signaling and microvascular flow is crucial yet challenging due to photon noise and motion artifacts. Here we present a deep learning framework for enhancing the spatiotemporal relations of optical microscopy data. Our approach leverages correlations of mirrored perspectives from conjugated scan paths, training a model to suppress noise and motion blur by restoring degraded spatial features. Quantitative validation on vibrational calcium imaging validates significant gains in spatiotemporal correlation (2.2×), signal-to-noise ratio (9–12 dB), structural similarity (6.6×), and motion tolerance compared to raw data. We further apply the framework to diverse in vivo experiments from mouse cerebral hemodynamics to zebrafish cardiac dynamics. This approach enables the clear visualization of the rapid nutrient flow (30 mm/s) in microcirculation and the systolic and diastolic processes of heartbeat (2.7 cycle/s), as well as cellular and vascular structure in deep cortex. Unlike techniques relying on temporal correlations, learning inherent spatial priors avoids motion-induced artifacts. This self-supervised strategy flexibly enhances live microscopy under photon-limited and motion-prone regimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信