{"title":"全球集合预测中多尺度奇异向量的初始扰动方法","authors":"Xin Liu, Jing Chen, Yongzhu Liu, Zhenhua Huo, Zhizhen Xu, Fajing Chen, Jing Wang, Yanan Ma, Yumeng Han","doi":"10.1007/s00376-023-3035-4","DOIUrl":null,"url":null,"abstract":"<p>Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction (NWP) caused by errors in initial conditions (ICs). The traditional Singular Vector (SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm, energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to (i) improve the relationship between the ensemble spread and the root-mean-square error and (ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short- to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction\",\"authors\":\"Xin Liu, Jing Chen, Yongzhu Liu, Zhenhua Huo, Zhizhen Xu, Fajing Chen, Jing Wang, Yanan Ma, Yumeng Han\",\"doi\":\"10.1007/s00376-023-3035-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction (NWP) caused by errors in initial conditions (ICs). The traditional Singular Vector (SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm, energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to (i) improve the relationship between the ensemble spread and the root-mean-square error and (ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short- to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3035-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3035-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction
Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction (NWP) caused by errors in initial conditions (ICs). The traditional Singular Vector (SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System (CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm, energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to (i) improve the relationship between the ensemble spread and the root-mean-square error and (ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short- to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.