不相交线段上的多项式逼近和逼近放大

IF 0.9 3区 数学 Q2 MATHEMATICS
Yu. Malykhin , K. Ryutin
{"title":"不相交线段上的多项式逼近和逼近放大","authors":"Yu. Malykhin ,&nbsp;K. Ryutin","doi":"10.1016/j.jat.2023.106010","DOIUrl":null,"url":null,"abstract":"<div><p><span>We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments (see </span><span>(1)</span><span><span>). This problem has important applications in several areas of numerical analysis, complexity theory, </span>quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree </span><span><math><mi>M</mi></math></span><span> and better accuracy from the approximations of degree </span><span><math><mi>m</mi></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial approximation on disjoint segments and amplification of approximation\",\"authors\":\"Yu. Malykhin ,&nbsp;K. Ryutin\",\"doi\":\"10.1016/j.jat.2023.106010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments (see </span><span>(1)</span><span><span>). This problem has important applications in several areas of numerical analysis, complexity theory, </span>quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree </span><span><math><mi>M</mi></math></span><span> and better accuracy from the approximations of degree </span><span><math><mi>m</mi></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452300148X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452300148X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为不相交线段结合部上的局部恒定函数(见 (1))构建了清晰易实现的多项式近似值,其精度足够高。这个问题在数值分析、复杂性理论、量子算法等多个领域都有重要应用。其中与我们最相关的是近似方法的放大:它允许从 m 级的近似值中构造出更高 M 级和更高精度的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial approximation on disjoint segments and amplification of approximation

We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments (see (1)). This problem has important applications in several areas of numerical analysis, complexity theory, quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree M and better accuracy from the approximations of degree m.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信