{"title":"大气双极模式的持久性和地带尺度","authors":"Jie Song","doi":"10.1007/s00376-023-3023-8","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the relationship between the persistence and the zonal scale of atmospheric dipolar modes (DMs). Results from the daily data of ERA5 and the long-term output of an idealized atmospheric model show that the atmospheric DMs with a broader (narrower) zonal scale dipolar structure possess a longer (shorter) persistence. A detailed vorticity budget analysis indicates that the persistence of a hemispheric-scale DM (1/1 DM) and a regional or sectoral DM (1/8 DM) in the model both largely rely on the persistence of the nonlinear eddy forcing. Linear terms can indirectly reduce the persistence of the anomalous nonlinear eddy forcing in a 1/8 DM by modifying the baroclinicity via the arousal of anomalous vertical motions. Therefore, the atmospheric DMs with a broader (narrower) zonal scale possess a longer (shorter) persistence because the effects of the linear terms are less (more) pronounced when the atmospheric DMs have better (worse) zonal symmetry. Further analyses show that the positive eddy feedback effect is weak or even absent in a 1/8 DM and the high-frequency eddy forcing acts more like a concomitant phenomenon rather than a leading driving factor for a 1/8 DM. Thus, the hemispheric-scale DM and the regional or sectoral DMs are different, not only in their persistence but also in their dynamics.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"27 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Persistence and Zonal Scale of Atmospheric Dipolar Modes\",\"authors\":\"Jie Song\",\"doi\":\"10.1007/s00376-023-3023-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the relationship between the persistence and the zonal scale of atmospheric dipolar modes (DMs). Results from the daily data of ERA5 and the long-term output of an idealized atmospheric model show that the atmospheric DMs with a broader (narrower) zonal scale dipolar structure possess a longer (shorter) persistence. A detailed vorticity budget analysis indicates that the persistence of a hemispheric-scale DM (1/1 DM) and a regional or sectoral DM (1/8 DM) in the model both largely rely on the persistence of the nonlinear eddy forcing. Linear terms can indirectly reduce the persistence of the anomalous nonlinear eddy forcing in a 1/8 DM by modifying the baroclinicity via the arousal of anomalous vertical motions. Therefore, the atmospheric DMs with a broader (narrower) zonal scale possess a longer (shorter) persistence because the effects of the linear terms are less (more) pronounced when the atmospheric DMs have better (worse) zonal symmetry. Further analyses show that the positive eddy feedback effect is weak or even absent in a 1/8 DM and the high-frequency eddy forcing acts more like a concomitant phenomenon rather than a leading driving factor for a 1/8 DM. Thus, the hemispheric-scale DM and the regional or sectoral DMs are different, not only in their persistence but also in their dynamics.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-023-3023-8\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3023-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Persistence and Zonal Scale of Atmospheric Dipolar Modes
This study investigates the relationship between the persistence and the zonal scale of atmospheric dipolar modes (DMs). Results from the daily data of ERA5 and the long-term output of an idealized atmospheric model show that the atmospheric DMs with a broader (narrower) zonal scale dipolar structure possess a longer (shorter) persistence. A detailed vorticity budget analysis indicates that the persistence of a hemispheric-scale DM (1/1 DM) and a regional or sectoral DM (1/8 DM) in the model both largely rely on the persistence of the nonlinear eddy forcing. Linear terms can indirectly reduce the persistence of the anomalous nonlinear eddy forcing in a 1/8 DM by modifying the baroclinicity via the arousal of anomalous vertical motions. Therefore, the atmospheric DMs with a broader (narrower) zonal scale possess a longer (shorter) persistence because the effects of the linear terms are less (more) pronounced when the atmospheric DMs have better (worse) zonal symmetry. Further analyses show that the positive eddy feedback effect is weak or even absent in a 1/8 DM and the high-frequency eddy forcing acts more like a concomitant phenomenon rather than a leading driving factor for a 1/8 DM. Thus, the hemispheric-scale DM and the regional or sectoral DMs are different, not only in their persistence but also in their dynamics.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.