{"title":"硒纳米粒子及其生物医学应用综述","authors":"K.K. Karthik , Binoy Varghese Cheriyan , S. Rajeshkumar , Meenaloshini Gopalakrishnan","doi":"10.1016/j.bmt.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology has enormous promise for a wide range of applications in biology. Nanoparticles (NPs) have the benefit of improving bioactivity, decreasing toxicity, allowing for precision targeting, and modulating the release profile of encapsulated compounds. Nanomaterials' unique qualities, such as their tiny size, biocompatibility, and ability to cross cell membranes for drug administration, make them useful in a variety of biological applications. Selenium (Se), a critical trace element, stands out among these nanoparticles due to its specific bioactivities in nano forms. Selenium is incorporated into Selenoproteins such as selenocysteine (Sec), which play an important role in maintaining physiological redox balance via oxidoreductase activity, a critical enzymatic process. In the field of medication delivery, selenium-based devices have been designed to transport pharmaceuticals to specific locations. Selenium nanoparticles (SeNPs) appear to be a suitable platform for delivering medications to their desired sites. Selenium's medicinal potential has been thoroughly investigated, including its efficacy against various cancer cells, microbial pathogens, viral infections, neuroprotective properties, diabetic control, oxidative stress, and inflammation-mediated illnesses such as rheumatoid arthritis. Notably, due to selenium's extraordinary involvement in immune system regulation, SeNPs have an edge over other nanoparticles. SeNPs phytosynthesis offers an appealing alternative to standard physical and chemical processes, featuring biocompatibility and environmental friendliness. This paper gives an overview of SeNPs' biological uses and emphasizes recent advances in the field.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"6 ","pages":"Pages 61-74"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X23000764/pdfft?md5=a445391da4c23dcea4c119151b5d864c&pid=1-s2.0-S2949723X23000764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review on selenium nanoparticles and their biomedical applications\",\"authors\":\"K.K. Karthik , Binoy Varghese Cheriyan , S. Rajeshkumar , Meenaloshini Gopalakrishnan\",\"doi\":\"10.1016/j.bmt.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanotechnology has enormous promise for a wide range of applications in biology. Nanoparticles (NPs) have the benefit of improving bioactivity, decreasing toxicity, allowing for precision targeting, and modulating the release profile of encapsulated compounds. Nanomaterials' unique qualities, such as their tiny size, biocompatibility, and ability to cross cell membranes for drug administration, make them useful in a variety of biological applications. Selenium (Se), a critical trace element, stands out among these nanoparticles due to its specific bioactivities in nano forms. Selenium is incorporated into Selenoproteins such as selenocysteine (Sec), which play an important role in maintaining physiological redox balance via oxidoreductase activity, a critical enzymatic process. In the field of medication delivery, selenium-based devices have been designed to transport pharmaceuticals to specific locations. Selenium nanoparticles (SeNPs) appear to be a suitable platform for delivering medications to their desired sites. Selenium's medicinal potential has been thoroughly investigated, including its efficacy against various cancer cells, microbial pathogens, viral infections, neuroprotective properties, diabetic control, oxidative stress, and inflammation-mediated illnesses such as rheumatoid arthritis. Notably, due to selenium's extraordinary involvement in immune system regulation, SeNPs have an edge over other nanoparticles. SeNPs phytosynthesis offers an appealing alternative to standard physical and chemical processes, featuring biocompatibility and environmental friendliness. This paper gives an overview of SeNPs' biological uses and emphasizes recent advances in the field.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"6 \",\"pages\":\"Pages 61-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949723X23000764/pdfft?md5=a445391da4c23dcea4c119151b5d864c&pid=1-s2.0-S2949723X23000764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X23000764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X23000764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review on selenium nanoparticles and their biomedical applications
Nanotechnology has enormous promise for a wide range of applications in biology. Nanoparticles (NPs) have the benefit of improving bioactivity, decreasing toxicity, allowing for precision targeting, and modulating the release profile of encapsulated compounds. Nanomaterials' unique qualities, such as their tiny size, biocompatibility, and ability to cross cell membranes for drug administration, make them useful in a variety of biological applications. Selenium (Se), a critical trace element, stands out among these nanoparticles due to its specific bioactivities in nano forms. Selenium is incorporated into Selenoproteins such as selenocysteine (Sec), which play an important role in maintaining physiological redox balance via oxidoreductase activity, a critical enzymatic process. In the field of medication delivery, selenium-based devices have been designed to transport pharmaceuticals to specific locations. Selenium nanoparticles (SeNPs) appear to be a suitable platform for delivering medications to their desired sites. Selenium's medicinal potential has been thoroughly investigated, including its efficacy against various cancer cells, microbial pathogens, viral infections, neuroprotective properties, diabetic control, oxidative stress, and inflammation-mediated illnesses such as rheumatoid arthritis. Notably, due to selenium's extraordinary involvement in immune system regulation, SeNPs have an edge over other nanoparticles. SeNPs phytosynthesis offers an appealing alternative to standard physical and chemical processes, featuring biocompatibility and environmental friendliness. This paper gives an overview of SeNPs' biological uses and emphasizes recent advances in the field.