通过原位原子力显微镜揭示锌金属电池中锌阳极的电镀/剥离过程

Jiao Wang , Jian-Xin Tian , Zhen-Zhen Shen , Rui Wen
{"title":"通过原位原子力显微镜揭示锌金属电池中锌阳极的电镀/剥离过程","authors":"Jiao Wang ,&nbsp;Jian-Xin Tian ,&nbsp;Zhen-Zhen Shen ,&nbsp;Rui Wen","doi":"10.1016/j.nxnano.2023.100036","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanistic insights into the interfacial evolution are essential for advancing rechargeable zinc metal batteries (RZMBs). Employing <em>in situ</em> atomic force microscopy (AFM), we observed the Zn plating and stripping processes on the Zn metal anode and investigated the effect of initial stripping over the interfacial evolution. During the initial stripping process, the interfacial evolution is uneven, and by-products form at the Zn anode, which contributes to the heterogeneous nucleation and quick dendrite growth during the subsequent plating, causing performance fading. In contrast, uniform Zn deposition and reversible dissolution can be achieved during the initial plating and following stripping processes. The Zn substrate remains flat without evident cracks or pits, which ensures the interfacial stability of the Zn metal anode during cycling. This work provides direct insights into the morphological evolution and interfacial mechanism of Zn metal anode, promoting the optimal design of advanced RZMBs.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000360/pdfft?md5=1ea1127e7dfcdebbee552e9d8f81a8d2&pid=1-s2.0-S2949829523000360-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revealing the plating/stripping processes on Zn anodes in Zn metal batteries via in situ AFM\",\"authors\":\"Jiao Wang ,&nbsp;Jian-Xin Tian ,&nbsp;Zhen-Zhen Shen ,&nbsp;Rui Wen\",\"doi\":\"10.1016/j.nxnano.2023.100036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanistic insights into the interfacial evolution are essential for advancing rechargeable zinc metal batteries (RZMBs). Employing <em>in situ</em> atomic force microscopy (AFM), we observed the Zn plating and stripping processes on the Zn metal anode and investigated the effect of initial stripping over the interfacial evolution. During the initial stripping process, the interfacial evolution is uneven, and by-products form at the Zn anode, which contributes to the heterogeneous nucleation and quick dendrite growth during the subsequent plating, causing performance fading. In contrast, uniform Zn deposition and reversible dissolution can be achieved during the initial plating and following stripping processes. The Zn substrate remains flat without evident cracks or pits, which ensures the interfacial stability of the Zn metal anode during cycling. This work provides direct insights into the morphological evolution and interfacial mechanism of Zn metal anode, promoting the optimal design of advanced RZMBs.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829523000360/pdfft?md5=1ea1127e7dfcdebbee552e9d8f81a8d2&pid=1-s2.0-S2949829523000360-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829523000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829523000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深入了解界面演变的机理对于推动可充电锌金属电池(RZMB)的发展至关重要。我们利用原位原子力显微镜(AFM)观察了锌金属阳极上的镀锌和剥离过程,并研究了初始剥离对界面演化的影响。在初始剥离过程中,界面演化不均匀,在锌阳极上形成副产物,这导致了后续电镀过程中的异质成核和树枝状晶粒的快速生长,从而造成性能下降。相反,在初始电镀和随后的剥离过程中,可以实现均匀的锌沉积和可逆溶解。锌基板保持平整,没有明显的裂缝或凹坑,这确保了锌金属阳极在循环过程中的界面稳定性。这项工作直接揭示了金属锌阳极的形态演变和界面机制,促进了先进 RZMB 的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing the plating/stripping processes on Zn anodes in Zn metal batteries via in situ AFM

Mechanistic insights into the interfacial evolution are essential for advancing rechargeable zinc metal batteries (RZMBs). Employing in situ atomic force microscopy (AFM), we observed the Zn plating and stripping processes on the Zn metal anode and investigated the effect of initial stripping over the interfacial evolution. During the initial stripping process, the interfacial evolution is uneven, and by-products form at the Zn anode, which contributes to the heterogeneous nucleation and quick dendrite growth during the subsequent plating, causing performance fading. In contrast, uniform Zn deposition and reversible dissolution can be achieved during the initial plating and following stripping processes. The Zn substrate remains flat without evident cracks or pits, which ensures the interfacial stability of the Zn metal anode during cycling. This work provides direct insights into the morphological evolution and interfacial mechanism of Zn metal anode, promoting the optimal design of advanced RZMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信