车辆自动化数据引起的二氧化碳排放:一个被忽视的排放源

Rosalie van Oosterhout , Peter Striekwold , Meng Wang
{"title":"车辆自动化数据引起的二氧化碳排放:一个被忽视的排放源","authors":"Rosalie van Oosterhout ,&nbsp;Peter Striekwold ,&nbsp;Meng Wang","doi":"10.1016/j.horiz.2023.100082","DOIUrl":null,"url":null,"abstract":"<div><p>CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission of vehicles and its influence on climate change is a widely discussed topic already for many years. New CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission norms for vehicles have been introduced based on the propulsion of the vehicle, to reduce future CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. Automated vehicles (AVs) have potential in reducing emissions by optimizing routes and speed profiles. However, they also generate extra emissions due to large data involved. Whether the norms can be met with these extra data-induced emissions of AVs remains an open question. This paper provides an approach to determine the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of these data related aspects. The approach dissects data-induced emissions stemming from energy consumption of the sensing components, the computing platform, disks inside the vehicle, wireless communication networks and data centers. We apply the approach to estimate CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions for varying scenarios of technology composition and energy mix. Sensitivity analysis shows that the energy intensity of wireless communication networks and the data transmission rate from vehicle to data center have the strongest influence on the resulting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. The energy mix also significantly affects whether the norms can be met. For high amounts of data transmission, compliance with the norms seem to be difficult in most scenarios. We recommend that the energy consumption of wireless communication networks and data transmission from vehicle to data center should be further optimized. Future work should focus on empirical evidence to validate/falsify the key assumptions in this paper, which will lead to a more accurate estimate of automation-induced emissions.</p></div>","PeriodicalId":101199,"journal":{"name":"Sustainable Horizons","volume":"9 ","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772737823000366/pdfft?md5=88caa6d00f30708327e0db9d6ea67a8a&pid=1-s2.0-S2772737823000366-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On data-induced CO2 emissions of vehicle automation: An overlooked emission source\",\"authors\":\"Rosalie van Oosterhout ,&nbsp;Peter Striekwold ,&nbsp;Meng Wang\",\"doi\":\"10.1016/j.horiz.2023.100082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission of vehicles and its influence on climate change is a widely discussed topic already for many years. New CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission norms for vehicles have been introduced based on the propulsion of the vehicle, to reduce future CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. Automated vehicles (AVs) have potential in reducing emissions by optimizing routes and speed profiles. However, they also generate extra emissions due to large data involved. Whether the norms can be met with these extra data-induced emissions of AVs remains an open question. This paper provides an approach to determine the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of these data related aspects. The approach dissects data-induced emissions stemming from energy consumption of the sensing components, the computing platform, disks inside the vehicle, wireless communication networks and data centers. We apply the approach to estimate CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions for varying scenarios of technology composition and energy mix. Sensitivity analysis shows that the energy intensity of wireless communication networks and the data transmission rate from vehicle to data center have the strongest influence on the resulting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions. The energy mix also significantly affects whether the norms can be met. For high amounts of data transmission, compliance with the norms seem to be difficult in most scenarios. We recommend that the energy consumption of wireless communication networks and data transmission from vehicle to data center should be further optimized. Future work should focus on empirical evidence to validate/falsify the key assumptions in this paper, which will lead to a more accurate estimate of automation-induced emissions.</p></div>\",\"PeriodicalId\":101199,\"journal\":{\"name\":\"Sustainable Horizons\",\"volume\":\"9 \",\"pages\":\"Article 100082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772737823000366/pdfft?md5=88caa6d00f30708327e0db9d6ea67a8a&pid=1-s2.0-S2772737823000366-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Horizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772737823000366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Horizons","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772737823000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆的二氧化碳排放及其对气候变化的影响是一个广泛讨论多年的话题。新的汽车二氧化碳排放标准是根据汽车的推进力制定的,目的是减少未来的二氧化碳排放量。自动驾驶汽车(AV)通过优化路线和速度曲线,具有减少排放的潜力。然而,由于涉及大量数据,它们也会产生额外的排放。自动驾驶汽车的这些额外数据引起的排放是否能满足规范要求仍是一个未决问题。本文提供了一种确定这些数据相关方面二氧化碳排放量的方法。该方法剖析了传感组件、计算平台、车内磁盘、无线通信网络和数据中心的能耗所产生的数据诱导排放。我们应用该方法估算了不同技术构成和能源组合情况下的二氧化碳排放量。敏感性分析表明,无线通信网络的能源强度和从车辆到数据中心的数据传输速率对二氧化碳排放量的影响最大。能源组合也对能否达到标准有很大影响。对于高数据传输量,在大多数情况下似乎都很难达到标准。我们建议进一步优化无线通信网络的能耗以及从车辆到数据中心的数据传输。未来的工作应重点关注经验证据,以验证/证伪本文中的关键假设,从而更准确地估算自动化引起的排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On data-induced CO2 emissions of vehicle automation: An overlooked emission source

CO2 emission of vehicles and its influence on climate change is a widely discussed topic already for many years. New CO2 emission norms for vehicles have been introduced based on the propulsion of the vehicle, to reduce future CO2 emissions. Automated vehicles (AVs) have potential in reducing emissions by optimizing routes and speed profiles. However, they also generate extra emissions due to large data involved. Whether the norms can be met with these extra data-induced emissions of AVs remains an open question. This paper provides an approach to determine the CO2 emissions of these data related aspects. The approach dissects data-induced emissions stemming from energy consumption of the sensing components, the computing platform, disks inside the vehicle, wireless communication networks and data centers. We apply the approach to estimate CO2 emissions for varying scenarios of technology composition and energy mix. Sensitivity analysis shows that the energy intensity of wireless communication networks and the data transmission rate from vehicle to data center have the strongest influence on the resulting CO2 emissions. The energy mix also significantly affects whether the norms can be met. For high amounts of data transmission, compliance with the norms seem to be difficult in most scenarios. We recommend that the energy consumption of wireless communication networks and data transmission from vehicle to data center should be further optimized. Future work should focus on empirical evidence to validate/falsify the key assumptions in this paper, which will lead to a more accurate estimate of automation-induced emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信