探索过氧化物晶体结构在化学循环技术方面的潜力:最新技术综述

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED
Tenzin Dawa, Baharak Sajjadi
{"title":"探索过氧化物晶体结构在化学循环技术方面的潜力:最新技术综述","authors":"Tenzin Dawa,&nbsp;Baharak Sajjadi","doi":"10.1016/j.fuproc.2023.108022","DOIUrl":null,"url":null,"abstract":"<div><p>In light of the increasing concern for sustainable growth and development, there is a rising demand for energy-efficient conversion processes. Chemical Looping (CL) technology has emerged as a promising solution that utilizes chemical intermediates, such as metal oxides or other metal derivatives, to decompose complex reactions into multiple sub-reaction steps. This innovative approach enables the separation of the overall reaction into distinct stages, which can be conducted in separate reactors. Consequently, the direct contact between inert substances present in reactant feedstocks and the desired product can be avoided, leading to reduced purification costs. This state-of-the-art literature review provides an updated overview of the potential of perovskite structures in chemical looping technology. Perovskite materials exhibit desirable properties, including excellent oxygen transport capabilities, high chemical stability, and adjustable redox properties, making them ideal candidates for CL applications. By examining recent advancements and research efforts, this review aims to shed light on the current state of perovskite based CL, its challenges, and future prospects. The findings presented here contribute to the understanding of the potential of perovskite structures in enabling energy-efficient and sustainable chemical conversion processes. This review includes two major parts, the first part is dedicated to the structure of the perovskites and the corresponding classifications based on the cell structure, ionic size cation phase, and dimension, while the second part of the work focuses on the applications of those structures in seven different chemical looping technologies, including chemical looping combustion (CLC), chemical looping reforming (CLR), chemical looping gasification (CLG), chemical looping oxygen uncoupling (CLOU), chemical looping air separation (CLAS), chemical looping dehydrogenation (CLDH), and chemical looping epoxidation (CLEPOX).</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"253 ","pages":"Article 108022"},"PeriodicalIF":7.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382023003703/pdfft?md5=5405c3f79995ca4fd1ab693611b1cf05&pid=1-s2.0-S0378382023003703-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of perovskite structures for chemical looping technology: A state-of-the-art review\",\"authors\":\"Tenzin Dawa,&nbsp;Baharak Sajjadi\",\"doi\":\"10.1016/j.fuproc.2023.108022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In light of the increasing concern for sustainable growth and development, there is a rising demand for energy-efficient conversion processes. Chemical Looping (CL) technology has emerged as a promising solution that utilizes chemical intermediates, such as metal oxides or other metal derivatives, to decompose complex reactions into multiple sub-reaction steps. This innovative approach enables the separation of the overall reaction into distinct stages, which can be conducted in separate reactors. Consequently, the direct contact between inert substances present in reactant feedstocks and the desired product can be avoided, leading to reduced purification costs. This state-of-the-art literature review provides an updated overview of the potential of perovskite structures in chemical looping technology. Perovskite materials exhibit desirable properties, including excellent oxygen transport capabilities, high chemical stability, and adjustable redox properties, making them ideal candidates for CL applications. By examining recent advancements and research efforts, this review aims to shed light on the current state of perovskite based CL, its challenges, and future prospects. The findings presented here contribute to the understanding of the potential of perovskite structures in enabling energy-efficient and sustainable chemical conversion processes. This review includes two major parts, the first part is dedicated to the structure of the perovskites and the corresponding classifications based on the cell structure, ionic size cation phase, and dimension, while the second part of the work focuses on the applications of those structures in seven different chemical looping technologies, including chemical looping combustion (CLC), chemical looping reforming (CLR), chemical looping gasification (CLG), chemical looping oxygen uncoupling (CLOU), chemical looping air separation (CLAS), chemical looping dehydrogenation (CLDH), and chemical looping epoxidation (CLEPOX).</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"253 \",\"pages\":\"Article 108022\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382023003703/pdfft?md5=5405c3f79995ca4fd1ab693611b1cf05&pid=1-s2.0-S0378382023003703-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382023003703\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023003703","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对可持续增长和发展的日益关注,对高能效转换工艺的需求也在不断增加。化学循环(CL)技术是一种很有前途的解决方案,它利用金属氧化物或其他金属衍生物等化学中间体,将复杂的反应分解为多个子反应步骤。这种创新方法可以将整个反应分离成不同的阶段,这些阶段可以在不同的反应器中进行。因此,可以避免反应原料中的惰性物质与所需产品直接接触,从而降低纯化成本。这篇最新文献综述概述了包晶体结构在化学循环技术中的潜力。包光体材料具有理想的特性,包括出色的氧气传输能力、高化学稳定性和可调节的氧化还原特性,使其成为化学循环应用的理想候选材料。通过研究最近的进展和研究工作,本综述旨在阐明基于包光体的化学循环技术的现状、挑战和未来前景。本文介绍的研究结果有助于人们了解包光体结构在实现高能效和可持续化学转换过程中的潜力。这篇综述包括两大部分,第一部分专门介绍了包晶石的结构以及基于晶胞结构、离子尺寸阳离子相和尺寸的相应分类,第二部分则重点介绍了这些结构在七种不同化学循环技术中的应用、化学循环燃烧(CLC)、化学循环重整(CLR)、化学循环气化(CLG)、化学循环脱氧(CLOU)、化学循环空气分离(CLAS)、化学循环脱氢(CLDH)和化学循环环氧化(CLEPOX)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the potential of perovskite structures for chemical looping technology: A state-of-the-art review

In light of the increasing concern for sustainable growth and development, there is a rising demand for energy-efficient conversion processes. Chemical Looping (CL) technology has emerged as a promising solution that utilizes chemical intermediates, such as metal oxides or other metal derivatives, to decompose complex reactions into multiple sub-reaction steps. This innovative approach enables the separation of the overall reaction into distinct stages, which can be conducted in separate reactors. Consequently, the direct contact between inert substances present in reactant feedstocks and the desired product can be avoided, leading to reduced purification costs. This state-of-the-art literature review provides an updated overview of the potential of perovskite structures in chemical looping technology. Perovskite materials exhibit desirable properties, including excellent oxygen transport capabilities, high chemical stability, and adjustable redox properties, making them ideal candidates for CL applications. By examining recent advancements and research efforts, this review aims to shed light on the current state of perovskite based CL, its challenges, and future prospects. The findings presented here contribute to the understanding of the potential of perovskite structures in enabling energy-efficient and sustainable chemical conversion processes. This review includes two major parts, the first part is dedicated to the structure of the perovskites and the corresponding classifications based on the cell structure, ionic size cation phase, and dimension, while the second part of the work focuses on the applications of those structures in seven different chemical looping technologies, including chemical looping combustion (CLC), chemical looping reforming (CLR), chemical looping gasification (CLG), chemical looping oxygen uncoupling (CLOU), chemical looping air separation (CLAS), chemical looping dehydrogenation (CLDH), and chemical looping epoxidation (CLEPOX).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信