{"title":"与霍乱弧菌非 O1/ 非 O139 的 SXT 基因相连的抗生素耐药基因 floR 和 strA 的基因组和功能研究。","authors":"Mousumi Saha, Agila Kumari Pragasam, Shashi Kumari, Jyoti Verma, Bhabatosh Das, Rupak K Bhadra","doi":"10.1099/mic.0.001424","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant <i>Vibrio cholerae</i> clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the <i>prfC</i> gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of <i>V. cholerae</i> non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked <i>floR</i> and <i>strAB</i> genes, which confer resistance to chloramphenicol and streptomycin, respectively. The <i>floR</i> gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The <i>floR</i> gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the <i>floR</i>. Deletion analysis of the N- and/or C-terminal coding regions of <i>strA</i> established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the <i>floR</i> and <i>strA</i> genes indicated that both of the genes are constitutively expressed in <i>V. cholerae</i> cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic and functional insights into antibiotic resistance genes <i>floR</i> and <i>strA</i> linked with the SXT element of <i>Vibrio cholerae</i> non-O1/non-O139.\",\"authors\":\"Mousumi Saha, Agila Kumari Pragasam, Shashi Kumari, Jyoti Verma, Bhabatosh Das, Rupak K Bhadra\",\"doi\":\"10.1099/mic.0.001424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant <i>Vibrio cholerae</i> clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the <i>prfC</i> gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of <i>V. cholerae</i> non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked <i>floR</i> and <i>strAB</i> genes, which confer resistance to chloramphenicol and streptomycin, respectively. The <i>floR</i> gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The <i>floR</i> gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the <i>floR</i>. Deletion analysis of the N- and/or C-terminal coding regions of <i>strA</i> established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the <i>floR</i> and <i>strA</i> genes indicated that both of the genes are constitutively expressed in <i>V. cholerae</i> cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001424\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001424","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Genomic and functional insights into antibiotic resistance genes floR and strA linked with the SXT element of Vibrio cholerae non-O1/non-O139.
The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant Vibrio cholerae clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the prfC gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of V. cholerae non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked floR and strAB genes, which confer resistance to chloramphenicol and streptomycin, respectively. The floR gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The floR gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the floR. Deletion analysis of the N- and/or C-terminal coding regions of strA established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the floR and strA genes indicated that both of the genes are constitutively expressed in V. cholerae cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.