用于预测乳腺癌新辅助化疗反应的乳腺多参数磁共振成像:BMMR2 挑战赛

IF 5.6 Q1 ONCOLOGY
Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton
{"title":"用于预测乳腺癌新辅助化疗反应的乳腺多参数磁共振成像:BMMR2 挑战赛","authors":"Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton","doi":"10.1148/rycan.230033","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 <b>Keywords:</b> MRI, Breast, Tumor Response <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 1","pages":"e230033"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825718/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge.\",\"authors\":\"Wen Li, Savannah C Partridge, David C Newitt, Jon Steingrimsson, Helga S Marques, Patrick J Bolan, Michael Hirano, Benjamin Aaron Bearce, Jayashree Kalpathy-Cramer, Michael A Boss, Xinzhi Teng, Jiang Zhang, Jing Cai, Despina Kontos, Eric A Cohen, Walter C Mankowski, Michael Liu, Richard Ha, Oscar J Pellicer-Valero, Klaus Maier-Hein, Simona Rabinovici-Cohen, Tal Tlusty, Michal Ozery-Flato, Vishwa S Parekh, Michael A Jacobs, Ran Yan, Kyunghyun Sung, Anum S Kazerouni, Julie C DiCarlo, Thomas E Yankeelov, Thomas L Chenevert, Nola M Hylton\",\"doi\":\"10.1148/rycan.230033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 <b>Keywords:</b> MRI, Breast, Tumor Response <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>\",\"PeriodicalId\":20786,\"journal\":{\"name\":\"Radiology. Imaging cancer\",\"volume\":\"6 1\",\"pages\":\"e230033\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology. Imaging cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/rycan.230033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.230033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的 描述用于预测新辅助化疗反应的乳腺多参数磁共振成像(BMMR2)挑战赛的设计、实施和结果。材料和方法 BMMR2计算挑战赛于2021年5月28日开始,2021年12月21日结束。该挑战赛的目标是识别基于图像的标记,这些标记来自多参数乳腺 MRI,包括弥散加权成像(DWI)和动态对比增强(DCE)MRI,以及用于预测新辅助治疗后病理完全反应(pCR)的临床数据。数据包括I-SPY 2/美国放射学会成像网络(ACRIN)6698试验(ClinicalTrials.gov:NCT01042379)中191名妇女(平均年龄[±SD],48.9岁±10.56岁)的573项乳腺MRI研究。挑战队列分为训练集(60%)和测试集(40%),团队对测试集的 pCR 结果保密。预测结果通过接收者操作特征曲线下面积(AUC)进行评估,并与 ACRIN 6698 主要分析所确定的基准进行比较。结果 八支团队提交了最终预测结果。三个团队的 AUC 点估计值高于基准值(AUC 为 0.782 [95% CI: 0.670, 0.893],AUC 分别为 0.803 [95% CI: 0.702, 0.904]、0.838 [95% CI: 0.748, 0.928] 和 0.840 [95% CI: 0.748, 0.932])。所使用的方法多种多样,从提取单个特征到深度学习和人工智能方法,将 DCE 和 DWI 单独或结合使用。结论 BMMR2 挑战赛确定了几个具有较高预测性能的模型,这可能会进一步扩大多参数乳腺 MRI 作为治疗反应早期标志物的价值。临床试验注册号NCT01042379 关键词MRI、乳腺、肿瘤反应 本文有补充材料。© RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge.

Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 Keywords: MRI, Breast, Tumor Response Supplemental material is available for this article. © RSNA, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
2.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信