暴露于抗焦虑药丁螺环酮会调节斑马鱼幼鱼(Danio rerio)的活动、焦虑相关行为和血清素系统的表达。

IF 2.6 3区 医学 Q3 NEUROSCIENCES
Angel Biju , Emma Ivantsova , Christopher L. Souders II , Cole English , Lev Avidan , Christopher J. Martyniuk
{"title":"暴露于抗焦虑药丁螺环酮会调节斑马鱼幼鱼(Danio rerio)的活动、焦虑相关行为和血清素系统的表达。","authors":"Angel Biju ,&nbsp;Emma Ivantsova ,&nbsp;Christopher L. Souders II ,&nbsp;Cole English ,&nbsp;Lev Avidan ,&nbsp;Christopher J. Martyniuk","doi":"10.1016/j.ntt.2023.107318","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the </span>dopaminergic<span><span> and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the </span>behavior<span> of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress<span>, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (μM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 μM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 μM buspirone. Transcript levels of </span></span></span></span><em>ache</em>, <em>manf</em>, and <em>mbp</em> were decreased in larvae, while the expression of <em>gap43</em> was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., <em>5ht1aa</em>, <em>sertb</em>, and <em>tph1a</em>). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"101 ","pages":"Article 107318"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to the pharmaceutical buspirone alters locomotor activity, anxiety-related behaviors, and transcripts related to serotonin signaling in larval zebrafish (Danio rerio)\",\"authors\":\"Angel Biju ,&nbsp;Emma Ivantsova ,&nbsp;Christopher L. Souders II ,&nbsp;Cole English ,&nbsp;Lev Avidan ,&nbsp;Christopher J. Martyniuk\",\"doi\":\"10.1016/j.ntt.2023.107318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the </span>dopaminergic<span><span> and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the </span>behavior<span> of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress<span>, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (μM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 μM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 μM buspirone. Transcript levels of </span></span></span></span><em>ache</em>, <em>manf</em>, and <em>mbp</em> were decreased in larvae, while the expression of <em>gap43</em> was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., <em>5ht1aa</em>, <em>sertb</em>, and <em>tph1a</em>). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.</p></div>\",\"PeriodicalId\":19144,\"journal\":{\"name\":\"Neurotoxicology and teratology\",\"volume\":\"101 \",\"pages\":\"Article 107318\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology and teratology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089203622300168X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089203622300168X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

丁螺环酮是一种通过作用于多巴胺能和血清素能系统来治疗一般焦虑症的药物。与许多人类药物一样,丁螺环酮也在城市污水中被检测到;然而,这种精神活性化合物的环境暴露风险尚不清楚。我们研究了丁螺环酮对斑马鱼行为的影响,重点是运动和抗焦虑行为。我们还测量了与氧化应激、神经毒性和血清素信号转导相关的转录本,以确定行为变化的潜在机制。浓度范围从环境相关浓度(nM)到典型的人类药物生理活性浓度(μM)不等。丁螺环酮处理不会影响斑马鱼的存活率,也不会导致斑马鱼畸形。在视觉运动反应试验的黑暗期,斑马鱼的运动活动与丁螺环酮浓度呈正相关。在明暗偏好试验中,1 μM 的丁螺环酮可增加每次进入暗区的平均时间和在暗区的累计时间百分比。暴露于丁螺环酮后,幼虫体内ache、manf和mbp的转录水平降低,而gap43的表达增加,这表明丁螺环酮可能具有神经毒性作用。此外,编码受体、转运体和生物合成酶(即 5ht1aa、sertb 和 tph1a)的血清素相关基因的表达也有所降低。这些数据加深了人们对斑马鱼经水接触神经活性药物(如丁螺环酮)后的行为和分子反应的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exposure to the pharmaceutical buspirone alters locomotor activity, anxiety-related behaviors, and transcripts related to serotonin signaling in larval zebrafish (Danio rerio)

Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the dopaminergic and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the behavior of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (μM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 μM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 μM buspirone. Transcript levels of ache, manf, and mbp were decreased in larvae, while the expression of gap43 was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., 5ht1aa, sertb, and tph1a). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
10.30%
发文量
48
审稿时长
58 days
期刊介绍: Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信