真菌生物劣化与文化遗产、艺术品和历史文物的保存:嗜极性与适应性。

IF 8 1区 生物学 Q1 MICROBIOLOGY
Microbiology and Molecular Biology Reviews Pub Date : 2024-03-27 Epub Date: 2024-01-05 DOI:10.1128/mmbr.00200-22
Geoffrey Michael Gadd, Marina Fomina, Flavia Pinzari
{"title":"真菌生物劣化与文化遗产、艺术品和历史文物的保存:嗜极性与适应性。","authors":"Geoffrey Michael Gadd, Marina Fomina, Flavia Pinzari","doi":"10.1128/mmbr.00200-22","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0020022"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation.\",\"authors\":\"Geoffrey Michael Gadd, Marina Fomina, Flavia Pinzari\",\"doi\":\"10.1128/mmbr.00200-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0020022\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00200-22\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00200-22","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要真菌是无处不在的重要生物圈居民,它们具有分解、降解和以其它方式转化大量有机和无机物质(包括植物有机物、岩石和矿物质)的能力,因此在建筑环境和文化遗产中具有重要的生物恶化作用。真菌通常是文化遗产生物劣化最明显的媒介,其影响范围从褪色、染色、生物污垢到破坏建筑构件、历史文物和艺术品不等。丝状真菌的孢子繁殖、形态适应性和探索性渗透生活方式使其能够在固体基质上高效传播和定殖,同时许多物种能够承受环境压力因素,如干燥、紫外线辐射、盐度和潜在的有毒有机和无机物质。许多菌种能在营养有限的条件下生长,许多菌种还能产生抗性细胞,在长期不利条件下存活。因此,真菌的生活方式和化学有机营养代谢使其能够适应室内外文化遗产中经常遇到的嗜极端条件并取得成功。除了自由生活的真菌外,地衣也是一种真菌生长形式,是室外材料(尤其是以石材和矿物为基础的建筑构件)中无处不在的先驱定殖者和生物洁净剂。本文探讨了真菌在文化遗产生物劣化中的作用和意义,涉及的机制和遇到的物质范围,评估和应对真菌生物劣化的方法,以及如何在生物保护中利用某些真菌过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation.

SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信