皮肤伤口愈合过程中的代谢重编程。

IF 6.3 1区 医学 Q1 DERMATOLOGY
Burns & Trauma Pub Date : 2024-01-02 eCollection Date: 2024-01-01 DOI:10.1093/burnst/tkad047
Zitong Wang, Feng Zhao, Chengcheng Xu, Qiqi Zhang, Haiyue Ren, Xing Huang, Cai He, Jiajie Ma, Zhe Wang
{"title":"皮肤伤口愈合过程中的代谢重编程。","authors":"Zitong Wang, Feng Zhao, Chengcheng Xu, Qiqi Zhang, Haiyue Ren, Xing Huang, Cai He, Jiajie Ma, Zhe Wang","doi":"10.1093/burnst/tkad047","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic reprogramming in skin wound healing.\",\"authors\":\"Zitong Wang, Feng Zhao, Chengcheng Xu, Qiqi Zhang, Haiyue Ren, Xing Huang, Cai He, Jiajie Ma, Zhe Wang\",\"doi\":\"10.1093/burnst/tkad047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.</p>\",\"PeriodicalId\":9553,\"journal\":{\"name\":\"Burns & Trauma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Burns & Trauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/burnst/tkad047\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkad047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程是指细胞在不同刺激和压力下改变其新陈代谢的能力。它有助于细胞抵御外部压力,并为细胞提供新的功能。皮肤伤口愈合涉及葡萄糖、脂类和氨基酸等营养物质的新陈代谢重编程,这些营养物质在多种类型细胞的增殖、分化和迁移过程中发挥着重要作用。在伤口的葡萄糖代谢过程中,葡萄糖转运体和关键酶会导致代谢物水平升高。葡萄糖介导的氧化应激会推动促炎反应,促进伤口愈合。重新规划脂质代谢可增加成纤维细胞的数量,减少巨噬细胞的数量。它能增强局部新生血管,提高纤维蛋白的稳定性,从而促进细胞外基质重塑,加快伤口愈合,减少疤痕形成。重新规划氨基酸代谢会影响伤口的再上皮化、胶原沉积和血管生成。然而,目前还缺乏有关代谢重编程在皮肤伤口愈合中作用的全面综述。因此,我们系统回顾了皮肤伤口愈合过程中葡萄糖、脂类和氨基酸的代谢重编程。值得注意的是,我们确定了它们具有潜在治疗价值的靶点,并阐明了它们的作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic reprogramming in skin wound healing.

Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信