最大阶数至少为 10 的平面图的邻域和区分总可选择性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Dong-han Zhang, You Lu, Sheng-gui Zhang, Li Zhang
{"title":"最大阶数至少为 10 的平面图的邻域和区分总可选择性","authors":"Dong-han Zhang,&nbsp;You Lu,&nbsp;Sheng-gui Zhang,&nbsp;Li Zhang","doi":"10.1007/s10255-024-1110-y","DOIUrl":null,"url":null,"abstract":"<div><p>A neighbor sum distinguishing (NSD) total coloring <i>ϕ</i> of <i>G</i> is a proper total coloring of <i>G</i> such that <span>\\(\\sum\\limits_{z \\in {E_G}(u) \\cup \\{u\\}} {\\phi (z) \\ne} \\sum\\limits_{z \\in {E_G}(v) \\cup \\{v\\}} {\\phi (z)} \\)</span> for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>), where <i>EG</i>(<i>u</i>) is the set of edges incident with a vertex <i>u</i>. In 2015, Pilśniak and Woźniak conjectured that every graph with maximum degree Δ has an NSD total (Δ + 3)-coloring. Recently, Yang et al. proved that the conjecture holds for planar graphs with Δ ≥ 10, and Qu et al. proved that the list version of the conjecture also holds for planar graphs with Δ ≥ 13. In this paper, we improve their results and prove that the list version of the conjecture holds for planar graphs with Δ ≥ 10.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"211 - 224"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor Sum Distinguishing Total Choosability of Planar Graphs with Maximum Degree at Least 10\",\"authors\":\"Dong-han Zhang,&nbsp;You Lu,&nbsp;Sheng-gui Zhang,&nbsp;Li Zhang\",\"doi\":\"10.1007/s10255-024-1110-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A neighbor sum distinguishing (NSD) total coloring <i>ϕ</i> of <i>G</i> is a proper total coloring of <i>G</i> such that <span>\\\\(\\\\sum\\\\limits_{z \\\\in {E_G}(u) \\\\cup \\\\{u\\\\}} {\\\\phi (z) \\\\ne} \\\\sum\\\\limits_{z \\\\in {E_G}(v) \\\\cup \\\\{v\\\\}} {\\\\phi (z)} \\\\)</span> for each edge <i>uv</i> ∈ <i>E</i>(<i>G</i>), where <i>EG</i>(<i>u</i>) is the set of edges incident with a vertex <i>u</i>. In 2015, Pilśniak and Woźniak conjectured that every graph with maximum degree Δ has an NSD total (Δ + 3)-coloring. Recently, Yang et al. proved that the conjecture holds for planar graphs with Δ ≥ 10, and Qu et al. proved that the list version of the conjecture also holds for planar graphs with Δ ≥ 13. In this paper, we improve their results and prove that the list version of the conjecture holds for planar graphs with Δ ≥ 10.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 1\",\"pages\":\"211 - 224\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1110-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1110-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

G 的邻域和区分(NSD)总着色是 G 的适当总着色,使得(sum/limits_{z \ in {E_G}(u) \cup \{u\}}){\phi (z) }\sum(和)_{z (在{E_G}(v)中) (cup ({v\}){每个边 uv ∈ E(G),其中 EG(u) 是顶点 u 附带的边的集合。2015 年,Pilśniak 和 Woźniak 猜想,每个最大度数为 Δ 的图都有一个 NSD 总(Δ + 3)着色。最近,Yang 等人证明了猜想在Δ ≥ 10 的平面图中成立,Qu 等人证明了猜想的列表版本在Δ ≥ 13 的平面图中也成立。在本文中,我们改进了他们的结果,证明了猜想的列表版本在 Δ ≥ 10 的平面图中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor Sum Distinguishing Total Choosability of Planar Graphs with Maximum Degree at Least 10

A neighbor sum distinguishing (NSD) total coloring ϕ of G is a proper total coloring of G such that \(\sum\limits_{z \in {E_G}(u) \cup \{u\}} {\phi (z) \ne} \sum\limits_{z \in {E_G}(v) \cup \{v\}} {\phi (z)} \) for each edge uvE(G), where EG(u) is the set of edges incident with a vertex u. In 2015, Pilśniak and Woźniak conjectured that every graph with maximum degree Δ has an NSD total (Δ + 3)-coloring. Recently, Yang et al. proved that the conjecture holds for planar graphs with Δ ≥ 10, and Qu et al. proved that the list version of the conjecture also holds for planar graphs with Δ ≥ 13. In this paper, we improve their results and prove that the list version of the conjecture holds for planar graphs with Δ ≥ 10.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信