杀虫剂和抗药性作用下寄主与害虫相互作用的数学模型:秋虫案例

IF 1.3 4区 数学 Q1 MATHEMATICS
Moreen Brenda Gatwiri, Marilyn Ronoh, Cyrus Gitonga Ngari, Dominic Makaa Kitavi
{"title":"杀虫剂和抗药性作用下寄主与害虫相互作用的数学模型:秋虫案例","authors":"Moreen Brenda Gatwiri, Marilyn Ronoh, Cyrus Gitonga Ngari, Dominic Makaa Kitavi","doi":"10.1155/2024/2886786","DOIUrl":null,"url":null,"abstract":"Several pest management programs have been developed to control rising agricultural pest populations. However, the challenge of rapid evolution and pest resistance towards control measures continues to cause high production losses to maize farmers in Africa. Few models have attempted to address the issue of fall armyworm (FAW) but have barely incorporated the effect of insecticide resistance. Models with resistance would help predict the dynamics of the FAW population, thus mitigating losses. The main objectives of this work were to develop, analyze, and numerically simulate a susceptible-infected deterministic mathematical model expressing the FAW-maize interaction and population dynamics under insecticidal sprays and resistance FAW larvae. Three model steady states are established. Their local stability is conducted using either the eigenvalue or the Routh–Hurwitz stability criteria, and their global stability is analyzed using either the Castillo–Chavez, Perron eigenvector, or the Lyapunov methods. An expression for the basic reproduction number <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.1624 11.927\" width=\"13.1624pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g></svg>,</span> together with the sensitivity analysis of its parameter values, is provided. Numerical analysis is conducted on various model parameter values. The results established all the model steady states to be locally and globally asymptotically stable at <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"></path></g></svg>.</span></span> Also, resistance <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 8.42472 6.1673\" width=\"8.42472pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> increased the infection rates by increasing the FAW larvae survival rate <svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.30254 9.49473\" width=\"7.30254pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and reducing the insecticidal efficacy <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 12.827 12.5794\" width=\"12.827pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.396,3.132)\"></path></g></svg> and <span><svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.8 12.5794\" width=\"14.8pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-226\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.396,3.132)\"></path></g></svg>.</span> This work informs the agriculturists and policymakers on pest control with the best ways to use insecticides to minimize pest resistance and enhance efficacy in production. Pest control measures should be modified to lower the FAW survival rate and all model parameters contributing to resistance formation by FAW larvae to minimize FAW-host interaction, thus reducing crop damage.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"43 1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling of Host-Pest Interaction in the Presence of Insecticides and Resistance: A Case of Fall Armyworm\",\"authors\":\"Moreen Brenda Gatwiri, Marilyn Ronoh, Cyrus Gitonga Ngari, Dominic Makaa Kitavi\",\"doi\":\"10.1155/2024/2886786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several pest management programs have been developed to control rising agricultural pest populations. However, the challenge of rapid evolution and pest resistance towards control measures continues to cause high production losses to maize farmers in Africa. Few models have attempted to address the issue of fall armyworm (FAW) but have barely incorporated the effect of insecticide resistance. Models with resistance would help predict the dynamics of the FAW population, thus mitigating losses. The main objectives of this work were to develop, analyze, and numerically simulate a susceptible-infected deterministic mathematical model expressing the FAW-maize interaction and population dynamics under insecticidal sprays and resistance FAW larvae. Three model steady states are established. Their local stability is conducted using either the eigenvalue or the Routh–Hurwitz stability criteria, and their global stability is analyzed using either the Castillo–Chavez, Perron eigenvector, or the Lyapunov methods. An expression for the basic reproduction number <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.1624 11.927\\\" width=\\\"13.1624pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"></path></g></svg>,</span> together with the sensitivity analysis of its parameter values, is provided. Numerical analysis is conducted on various model parameter values. The results established all the model steady states to be locally and globally asymptotically stable at <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"></path></g></svg>.</span></span> Also, resistance <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 8.42472 6.1673\\\" width=\\\"8.42472pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> increased the infection rates by increasing the FAW larvae survival rate <svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 7.30254 9.49473\\\" width=\\\"7.30254pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and reducing the insecticidal efficacy <svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 12.827 12.5794\\\" width=\\\"12.827pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.396,3.132)\\\"></path></g></svg> and <span><svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 14.8 12.5794\\\" width=\\\"14.8pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-226\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.396,3.132)\\\"></path></g></svg>.</span> This work informs the agriculturists and policymakers on pest control with the best ways to use insecticides to minimize pest resistance and enhance efficacy in production. Pest control measures should be modified to lower the FAW survival rate and all model parameters contributing to resistance formation by FAW larvae to minimize FAW-host interaction, thus reducing crop damage.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"43 1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2886786\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2886786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了控制不断增加的农业害虫数量,已经制定了多项害虫管理计划。然而,害虫的快速进化和对控制措施的抗药性仍然给非洲的玉米种植者造成了巨大的生产损失。很少有模型试图解决秋绵虫(FAW)问题,但几乎没有纳入杀虫剂抗药性的影响。具有抗药性的模型将有助于预测秋虫种群的动态,从而减少损失。这项工作的主要目标是开发、分析和数值模拟一个易感-感染确定性数学模型,该模型表达了在喷洒杀虫剂和有抗性的FAW幼虫作用下,FAW-玉米的相互作用和种群动态。建立了三个模型稳态。使用特征值或 Routh-Hurwitz 稳定性准则对它们的局部稳定性进行了分析,并使用 Castillo-Chavez、Perron 特征向量或 Lyapunov 方法对它们的全局稳定性进行了分析。提供了基本重现数的表达式及其参数值的敏感性分析。对各种模型参数值进行了数值分析。结果表明,所有模型的稳态在......时都是局部和全局渐近稳定的。此外,抗性还通过提高草翅虫幼虫存活率、降低杀虫效力和......来增加感染率。这项研究为农业工作者和害虫控制政策制定者提供了使用杀虫剂的最佳方法,以最大限度地减少害虫的抗药性,提高杀虫剂在生产中的效力。应修改害虫控制措施,以降低草翅虫存活率和所有有助于草翅虫幼虫抗药性形成的模型参数,从而最大限度地减少草翅虫与寄主的相互作用,从而减少对作物的损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Modelling of Host-Pest Interaction in the Presence of Insecticides and Resistance: A Case of Fall Armyworm
Several pest management programs have been developed to control rising agricultural pest populations. However, the challenge of rapid evolution and pest resistance towards control measures continues to cause high production losses to maize farmers in Africa. Few models have attempted to address the issue of fall armyworm (FAW) but have barely incorporated the effect of insecticide resistance. Models with resistance would help predict the dynamics of the FAW population, thus mitigating losses. The main objectives of this work were to develop, analyze, and numerically simulate a susceptible-infected deterministic mathematical model expressing the FAW-maize interaction and population dynamics under insecticidal sprays and resistance FAW larvae. Three model steady states are established. Their local stability is conducted using either the eigenvalue or the Routh–Hurwitz stability criteria, and their global stability is analyzed using either the Castillo–Chavez, Perron eigenvector, or the Lyapunov methods. An expression for the basic reproduction number , together with the sensitivity analysis of its parameter values, is provided. Numerical analysis is conducted on various model parameter values. The results established all the model steady states to be locally and globally asymptotically stable at . Also, resistance increased the infection rates by increasing the FAW larvae survival rate and reducing the insecticidal efficacy and . This work informs the agriculturists and policymakers on pest control with the best ways to use insecticides to minimize pest resistance and enhance efficacy in production. Pest control measures should be modified to lower the FAW survival rate and all model parameters contributing to resistance formation by FAW larvae to minimize FAW-host interaction, thus reducing crop damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信