{"title":"有氧糖酵解代谢差异的决定因素:为乳腺癌治疗提供潜在靶点","authors":"Ajeesh Babu Littleflower, Sulfath Thottungal Parambil, Gisha Rose Antony, Lakshmi Subhadradevi","doi":"10.1016/j.biochi.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic </span>enzymes<span>, including glucose transporters (GLUTs), hexokinase (HK), </span></span>phosphofructokinase<span> (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated </span></span>signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment\",\"authors\":\"Ajeesh Babu Littleflower, Sulfath Thottungal Parambil, Gisha Rose Antony, Lakshmi Subhadradevi\",\"doi\":\"10.1016/j.biochi.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic </span>enzymes<span>, including glucose transporters (GLUTs), hexokinase (HK), </span></span>phosphofructokinase<span> (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated </span></span>signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300908424000038\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000038","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
有氧糖酵解的改变是支持癌细胞生存和增殖的强大机制,而不仅仅是维持细胞的能量代谢。一些研究人员描绘了糖酵解失调在不同癌症(包括乳腺癌)中的重要作用。乳腺癌是最普遍的癌症形式,也是全球女性癌症死亡的主要原因。糖酵解通量增加的乳腺癌难以通过现有疗法根除,并可能导致肿瘤复发。尽管糖酵解产生 ATP 的效率很低,但癌细胞对糖酵解的依赖性很强。癌细胞对糖酵解的依赖性提供了潜在的治疗策略,通过使用抗糖酵解药物抑制糖酵解来优先杀死癌细胞。本综述强调了有关糖酵解酶(包括葡萄糖转运体 (GLUTs)、己糖激酶 (HK)、磷酸果糖激酶 (PFK)、丙酮酸激酶 (PK)、乳酸脱氢酶-A (LDHA))、相关信号通路和转录因子以及针对乳腺癌关键糖酵解酶的抗糖酵解药物的最新研究进展。即使在缺氧等较差的生理条件下,糖酵解抑制剂的潜在活性也会影响癌症的发病率和细胞对传统药物的耐药性。作为一种单药或与其他化疗药物联合使用,它为针对多种人类癌症的新疗法提供了可行性。
The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.