Amit K. Verma, Amar D. Pant, Anilkumar S. Pillai, A. Vinod Kumar
{"title":"利用计算技术测量环境中放射性氙的可行性研究","authors":"Amit K. Verma, Amar D. Pant, Anilkumar S. Pillai, A. Vinod Kumar","doi":"10.1007/s12647-023-00707-0","DOIUrl":null,"url":null,"abstract":"<div><p>Xenon (Xe) is a noble gas and therefore chemically inert in the environment. The Earth’s atmosphere contains approximately 0.087 ppm of stable xenon. Radio xenon isotopes like <sup>133</sup>Xe and <sup>135</sup>Xe are artificial isotopes generated from various nuclear facilities. Atmospheric measurement of radioactive xenon isotopes (radio xenon) plays a key role in remote monitoring of any nuclear accidents, abnormal release from nuclear facilities or nuclear explosions, since radio xenon has a high capability to migrate in a wide range from the site. The measurement of these gamma-emitting radioxenon gas can be done by sampling the gas in measurement geometry (like gas cell) and counting the cell in suitable gamma spectrometry-based detector system. For measurement of radioactive content in the sample, the efficiency calibration of system has to be carried out with same measurement geometry and same gamma ray energy that of sample. Many times, the radioactive standard sources in same measurement geometries and for same gamma energies are not feasible. In such cases, experimentally validated computational techniques are used for generating efficiency function. This paper describes the application of computational technique for measurement of radio xenon (<sup>133</sup>Xe and <sup>135</sup>Xe) gas in the environment.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":"39 1","pages":"89 - 93"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility Study of Radio Xenon Measurement in Environment Using Computational Techniques\",\"authors\":\"Amit K. Verma, Amar D. Pant, Anilkumar S. Pillai, A. Vinod Kumar\",\"doi\":\"10.1007/s12647-023-00707-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Xenon (Xe) is a noble gas and therefore chemically inert in the environment. The Earth’s atmosphere contains approximately 0.087 ppm of stable xenon. Radio xenon isotopes like <sup>133</sup>Xe and <sup>135</sup>Xe are artificial isotopes generated from various nuclear facilities. Atmospheric measurement of radioactive xenon isotopes (radio xenon) plays a key role in remote monitoring of any nuclear accidents, abnormal release from nuclear facilities or nuclear explosions, since radio xenon has a high capability to migrate in a wide range from the site. The measurement of these gamma-emitting radioxenon gas can be done by sampling the gas in measurement geometry (like gas cell) and counting the cell in suitable gamma spectrometry-based detector system. For measurement of radioactive content in the sample, the efficiency calibration of system has to be carried out with same measurement geometry and same gamma ray energy that of sample. Many times, the radioactive standard sources in same measurement geometries and for same gamma energies are not feasible. In such cases, experimentally validated computational techniques are used for generating efficiency function. This paper describes the application of computational technique for measurement of radio xenon (<sup>133</sup>Xe and <sup>135</sup>Xe) gas in the environment.</p></div>\",\"PeriodicalId\":689,\"journal\":{\"name\":\"MAPAN\",\"volume\":\"39 1\",\"pages\":\"89 - 93\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAPAN\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12647-023-00707-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-023-00707-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Feasibility Study of Radio Xenon Measurement in Environment Using Computational Techniques
Xenon (Xe) is a noble gas and therefore chemically inert in the environment. The Earth’s atmosphere contains approximately 0.087 ppm of stable xenon. Radio xenon isotopes like 133Xe and 135Xe are artificial isotopes generated from various nuclear facilities. Atmospheric measurement of radioactive xenon isotopes (radio xenon) plays a key role in remote monitoring of any nuclear accidents, abnormal release from nuclear facilities or nuclear explosions, since radio xenon has a high capability to migrate in a wide range from the site. The measurement of these gamma-emitting radioxenon gas can be done by sampling the gas in measurement geometry (like gas cell) and counting the cell in suitable gamma spectrometry-based detector system. For measurement of radioactive content in the sample, the efficiency calibration of system has to be carried out with same measurement geometry and same gamma ray energy that of sample. Many times, the radioactive standard sources in same measurement geometries and for same gamma energies are not feasible. In such cases, experimentally validated computational techniques are used for generating efficiency function. This paper describes the application of computational technique for measurement of radio xenon (133Xe and 135Xe) gas in the environment.
期刊介绍:
MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology.
The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.