训练数据的效用感知隐私扰动

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xinjiao Li, Guowei Wu, Lin Yao, Zhaolong Zheng, Shisong Geng
{"title":"训练数据的效用感知隐私扰动","authors":"Xinjiao Li, Guowei Wu, Lin Yao, Zhaolong Zheng, Shisong Geng","doi":"10.1145/3639411","DOIUrl":null,"url":null,"abstract":"<p>Data perturbation under differential privacy constraint is an important approach of protecting data privacy. However, as the data dimensions increase, the privacy budget allocated to each dimension decreases and thus the amount of noise added increases, which eventually leads to lower data utility in training tasks. To protect the privacy of training data while enhancing data utility, we propose an Utility-aware training data Privacy Perturbation scheme based on attribute Partition and budget Allocation (UPPPA). UPPPA includes three procedures, the quantification of attribute privacy and attribute importance, attribute partition, and budget allocation. The quantification of attribute privacy and attribute importance based on information entropy and attribute correlation provide an arithmetic basis for attribute partition and budget allocation. During the attribute partition, all attributes of training data are classified into high and low classes to achieve privacy amplification and utility enhancement. During the budget allocation, a <i>γ</i>-privacy model is proposed to balance data privacy and data utility so as to provide privacy constraint and guide budget allocation. Three comprehensive sets of real-world data are applied to evaluate the performance of UPPPA. Experiments and privacy analysis show that our scheme can achieve the tradeoff between privacy and utility.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"2 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility-aware Privacy Perturbation for Training Data\",\"authors\":\"Xinjiao Li, Guowei Wu, Lin Yao, Zhaolong Zheng, Shisong Geng\",\"doi\":\"10.1145/3639411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data perturbation under differential privacy constraint is an important approach of protecting data privacy. However, as the data dimensions increase, the privacy budget allocated to each dimension decreases and thus the amount of noise added increases, which eventually leads to lower data utility in training tasks. To protect the privacy of training data while enhancing data utility, we propose an Utility-aware training data Privacy Perturbation scheme based on attribute Partition and budget Allocation (UPPPA). UPPPA includes three procedures, the quantification of attribute privacy and attribute importance, attribute partition, and budget allocation. The quantification of attribute privacy and attribute importance based on information entropy and attribute correlation provide an arithmetic basis for attribute partition and budget allocation. During the attribute partition, all attributes of training data are classified into high and low classes to achieve privacy amplification and utility enhancement. During the budget allocation, a <i>γ</i>-privacy model is proposed to balance data privacy and data utility so as to provide privacy constraint and guide budget allocation. Three comprehensive sets of real-world data are applied to evaluate the performance of UPPPA. Experiments and privacy analysis show that our scheme can achieve the tradeoff between privacy and utility.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639411\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639411","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

差分隐私约束下的数据扰动是保护数据隐私的一种重要方法。然而,随着数据维度的增加,分配给每个维度的隐私预算会减少,因此增加的噪声量也会增加,最终导致训练任务中的数据效用降低。为了在提高数据效用的同时保护训练数据的隐私,我们提出了一种基于属性分割和预算分配的效用感知训练数据隐私扰动方案(UPPPA)。UPPPA 包括三个步骤:属性隐私和属性重要性量化、属性分区和预算分配。基于信息熵和属性相关性的属性隐私和属性重要性量化为属性分割和预算分配提供了运算基础。在属性划分过程中,将训练数据的所有属性划分为高类和低类,以实现隐私放大和效用增强。在预算分配过程中,提出了一个γ-隐私模型来平衡数据隐私和数据效用,从而提供隐私约束并指导预算分配。我们应用了三组全面的真实数据来评估 UPPPA 的性能。实验和隐私分析表明,我们的方案可以实现隐私和效用之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility-aware Privacy Perturbation for Training Data

Data perturbation under differential privacy constraint is an important approach of protecting data privacy. However, as the data dimensions increase, the privacy budget allocated to each dimension decreases and thus the amount of noise added increases, which eventually leads to lower data utility in training tasks. To protect the privacy of training data while enhancing data utility, we propose an Utility-aware training data Privacy Perturbation scheme based on attribute Partition and budget Allocation (UPPPA). UPPPA includes three procedures, the quantification of attribute privacy and attribute importance, attribute partition, and budget allocation. The quantification of attribute privacy and attribute importance based on information entropy and attribute correlation provide an arithmetic basis for attribute partition and budget allocation. During the attribute partition, all attributes of training data are classified into high and low classes to achieve privacy amplification and utility enhancement. During the budget allocation, a γ-privacy model is proposed to balance data privacy and data utility so as to provide privacy constraint and guide budget allocation. Three comprehensive sets of real-world data are applied to evaluate the performance of UPPPA. Experiments and privacy analysis show that our scheme can achieve the tradeoff between privacy and utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信