氮化硅电场极化微谐振器调制器

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-01-03 DOI:10.1063/5.0173507
Boris Zabelich, Christian Lafforgue, Edgars Nitiss, Anton Stroganov, Camille-Sophie Brès
{"title":"氮化硅电场极化微谐振器调制器","authors":"Boris Zabelich, Christian Lafforgue, Edgars Nitiss, Anton Stroganov, Camille-Sophie Brès","doi":"10.1063/5.0173507","DOIUrl":null,"url":null,"abstract":"Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear applications on a chip. However, due to its amorphous structure, silicon nitride lacks second-order nonlinearity; hence, the platform misses the key functionality of linear electro-optical modulation for photonic integrated circuits. Several approaches have been explored to address this problem, including integration with electro-optic active materials, piezoelectric tuning, and utilization of the thermo-optic effect. In this work, we demonstrate electro-optical modulation in a silicon nitride microring resonator enabled by electric-field poling, eliminating the complexities associated with material integration and providing data modulation speeds up to 75 Mb/s, currently only limited by the electrode design. With an estimated inscribed electric field of 100 V/μm, we achieve an effective second-order susceptibility of 0.45 pm/V. In addition, we derive and confirm the value of the material’s third-order susceptibility, which is responsible for the emergence of second-order nonlinearity. These findings broaden the functionality of silicon nitride as a platform for electro-optic modulation.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"36 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon nitride electric-field poled microresonator modulator\",\"authors\":\"Boris Zabelich, Christian Lafforgue, Edgars Nitiss, Anton Stroganov, Camille-Sophie Brès\",\"doi\":\"10.1063/5.0173507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear applications on a chip. However, due to its amorphous structure, silicon nitride lacks second-order nonlinearity; hence, the platform misses the key functionality of linear electro-optical modulation for photonic integrated circuits. Several approaches have been explored to address this problem, including integration with electro-optic active materials, piezoelectric tuning, and utilization of the thermo-optic effect. In this work, we demonstrate electro-optical modulation in a silicon nitride microring resonator enabled by electric-field poling, eliminating the complexities associated with material integration and providing data modulation speeds up to 75 Mb/s, currently only limited by the electrode design. With an estimated inscribed electric field of 100 V/μm, we achieve an effective second-order susceptibility of 0.45 pm/V. In addition, we derive and confirm the value of the material’s third-order susceptibility, which is responsible for the emergence of second-order nonlinearity. These findings broaden the functionality of silicon nitride as a platform for electro-optic modulation.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0173507\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0173507","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

氮化硅具有低传播损耗和与互补金属氧化物半导体技术兼容等有利特性,是一种备受推崇的平台,使其成为芯片上各种线性和非线性应用的重要选择。然而,由于其非晶结构,氮化硅缺乏二阶非线性,因此该平台无法实现光子集成电路线性电光调制的关键功能。为解决这一问题,人们探索了多种方法,包括与电光活性材料集成、压电调谐和利用热光效应。在这项工作中,我们展示了通过电场极化在氮化硅微oring 谐振器中实现的电光调制,消除了与材料集成相关的复杂性,并提供了高达 75 Mb/s 的数据调制速度,而这一速度目前仅受电极设计的限制。在 100 V/μm 的估计刻入电场下,我们实现了 0.45 pm/V 的有效二阶电感。此外,我们还推导并确认了材料的三阶电感值,它是二阶非线性出现的原因。这些发现拓宽了氮化硅作为电光调制平台的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon nitride electric-field poled microresonator modulator
Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear applications on a chip. However, due to its amorphous structure, silicon nitride lacks second-order nonlinearity; hence, the platform misses the key functionality of linear electro-optical modulation for photonic integrated circuits. Several approaches have been explored to address this problem, including integration with electro-optic active materials, piezoelectric tuning, and utilization of the thermo-optic effect. In this work, we demonstrate electro-optical modulation in a silicon nitride microring resonator enabled by electric-field poling, eliminating the complexities associated with material integration and providing data modulation speeds up to 75 Mb/s, currently only limited by the electrode design. With an estimated inscribed electric field of 100 V/μm, we achieve an effective second-order susceptibility of 0.45 pm/V. In addition, we derive and confirm the value of the material’s third-order susceptibility, which is responsible for the emergence of second-order nonlinearity. These findings broaden the functionality of silicon nitride as a platform for electro-optic modulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信