{"title":"微生物电解池系统中进化的大肠杆菌 LGE2-H 提高了生物乙醇产量","authors":"Cong Wang, Dongdong Chang, Qi Zhang, Zhisheng Yu","doi":"10.1186/s40643-023-00717-5","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved <i>Escherichia coli</i> to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the <i>E. coli</i>-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, <i>E. coli</i>-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced bioethanol production by evolved Escherichia coli LGE2-H in a microbial electrolysis cell system\",\"authors\":\"Cong Wang, Dongdong Chang, Qi Zhang, Zhisheng Yu\",\"doi\":\"10.1186/s40643-023-00717-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved <i>Escherichia coli</i> to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the <i>E. coli</i>-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, <i>E. coli</i>-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-023-00717-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-023-00717-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced bioethanol production by evolved Escherichia coli LGE2-H in a microbial electrolysis cell system
Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved Escherichia coli to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the E. coli-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, E. coli-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology