{"title":"乳化燃料的合成与表征 - 对喷雾和发动机研究的启示","authors":"Sudarshan Gowrishankar , Preetika Rastogi , Anand Krishnasamy , Madivala G. Basavaraj , Niket Kaisare , Indrapal Singh Aidhen","doi":"10.1016/j.pecs.2023.101133","DOIUrl":null,"url":null,"abstract":"<div><p><span>Conventional diesel combustion is a mixing-limited process that passes through high temperature and fuel-rich zones, leading to oxides of nitrogen (NO</span><sub>x</sub><span>) and particulate matter (PM) formation. Simultaneous reduction of NO</span><sub>x</sub> and PM is difficult due to NO<sub>x</sub><span>-PM trade-off. As alternative fuels, emulsions of water-in-diesel offer several advantages, including a simultaneous reduction in NO</span><sub>x</sub><span><span> and PM formation. There are, however, disparities in the reported engine performance and emission<span><span> characteristics, as they appear to depend on the constituents and microstructure of the emulsion fuel used and engine conditions. Studies on engine performance and exhaust emissions were often carried out without adequate characterization of the emulsions. Therefore, the paucity of cohesive data can be circumvented by standardizing the protocols for emulsion fuels, tailoring their morphology, structure, and characterization, and optimizing engine conditions. This review article recapitulates the salient features of emulsion fuels, from their synthesis, microstructure, characterization, and macroscopic spray characteristics to performance and emissions in </span>diesel engines<span>. A critical analysis of the current state of knowledge is also presented, emphasising the tunability of droplet size and characterization </span></span></span>of emulsion stability. The review concludes by suggesting the path forward to utilizing emulsion fuels.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"101 ","pages":"Article 101133"},"PeriodicalIF":32.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of emulsion fuels –Implications to spray and engine studies\",\"authors\":\"Sudarshan Gowrishankar , Preetika Rastogi , Anand Krishnasamy , Madivala G. Basavaraj , Niket Kaisare , Indrapal Singh Aidhen\",\"doi\":\"10.1016/j.pecs.2023.101133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Conventional diesel combustion is a mixing-limited process that passes through high temperature and fuel-rich zones, leading to oxides of nitrogen (NO</span><sub>x</sub><span>) and particulate matter (PM) formation. Simultaneous reduction of NO</span><sub>x</sub> and PM is difficult due to NO<sub>x</sub><span>-PM trade-off. As alternative fuels, emulsions of water-in-diesel offer several advantages, including a simultaneous reduction in NO</span><sub>x</sub><span><span> and PM formation. There are, however, disparities in the reported engine performance and emission<span><span> characteristics, as they appear to depend on the constituents and microstructure of the emulsion fuel used and engine conditions. Studies on engine performance and exhaust emissions were often carried out without adequate characterization of the emulsions. Therefore, the paucity of cohesive data can be circumvented by standardizing the protocols for emulsion fuels, tailoring their morphology, structure, and characterization, and optimizing engine conditions. This review article recapitulates the salient features of emulsion fuels, from their synthesis, microstructure, characterization, and macroscopic spray characteristics to performance and emissions in </span>diesel engines<span>. A critical analysis of the current state of knowledge is also presented, emphasising the tunability of droplet size and characterization </span></span></span>of emulsion stability. The review concludes by suggesting the path forward to utilizing emulsion fuels.</span></p></div>\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\"101 \",\"pages\":\"Article 101133\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360128523000631\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128523000631","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Synthesis and characterization of emulsion fuels –Implications to spray and engine studies
Conventional diesel combustion is a mixing-limited process that passes through high temperature and fuel-rich zones, leading to oxides of nitrogen (NOx) and particulate matter (PM) formation. Simultaneous reduction of NOx and PM is difficult due to NOx-PM trade-off. As alternative fuels, emulsions of water-in-diesel offer several advantages, including a simultaneous reduction in NOx and PM formation. There are, however, disparities in the reported engine performance and emission characteristics, as they appear to depend on the constituents and microstructure of the emulsion fuel used and engine conditions. Studies on engine performance and exhaust emissions were often carried out without adequate characterization of the emulsions. Therefore, the paucity of cohesive data can be circumvented by standardizing the protocols for emulsion fuels, tailoring their morphology, structure, and characterization, and optimizing engine conditions. This review article recapitulates the salient features of emulsion fuels, from their synthesis, microstructure, characterization, and macroscopic spray characteristics to performance and emissions in diesel engines. A critical analysis of the current state of knowledge is also presented, emphasising the tunability of droplet size and characterization of emulsion stability. The review concludes by suggesting the path forward to utilizing emulsion fuels.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.