Ling Li , Hao Zeng , Rongdi Tang , Zhanpeng Zhou , Sheng Xiong , Wenbo Li , Ying Huang , Yaocheng Deng
{"title":"以接枝分子为电子受体和活性位点的氮化碳实现高效光活化过一硫酸盐去除有机污染物的功能","authors":"Ling Li , Hao Zeng , Rongdi Tang , Zhanpeng Zhou , Sheng Xiong , Wenbo Li , Ying Huang , Yaocheng Deng","doi":"10.1016/j.apcatb.2024.123693","DOIUrl":null,"url":null,"abstract":"<div><p><span>The effective activation of peroxymonosulfate (PMS) by polymer carbon nitride (PCN) is hampered by the unpredictable movement and rapid recombination of photocarriers. In this study, niacin served as a beneficial modifier to help constructed the directional electron transfer pathway from the center to the edge in the synthesized PCN catalyst (UCNNA) for efficient PMS activation. The UCNNA/PMS/vis shows the highest kinetic constants (0.050 min</span><sup>−1</sup>), which is 2.9-fold increase over the PCN/PMS/vis. The experiments and theoretical calculations indicated that niacin as electron acceptor group prevents the recombination of photocarriers in-plane. Simultaneously, niacin can serve as PMS adsorption site, further facilitating electron transfer and the <sup>1</sup>O<sub>2</sub><span><span> generation. Mass spectrometry analysis and Fukui index calculations confirm the priority of lateral chain </span>oxidation (</span><sup>1</sup>O<sub>2</sub> attack site) during atrazine degradation. These results provide new insights into rational design of metal-free catalysts/PMS/vis system, as well as providing guidance and theoretical support for atrazine degradation mechanisms.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nitride with grafted molecular as electron acceptor and active site to achieve efficient photo-activated peroxymonosulfate for organic pollutants removal\",\"authors\":\"Ling Li , Hao Zeng , Rongdi Tang , Zhanpeng Zhou , Sheng Xiong , Wenbo Li , Ying Huang , Yaocheng Deng\",\"doi\":\"10.1016/j.apcatb.2024.123693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The effective activation of peroxymonosulfate (PMS) by polymer carbon nitride (PCN) is hampered by the unpredictable movement and rapid recombination of photocarriers. In this study, niacin served as a beneficial modifier to help constructed the directional electron transfer pathway from the center to the edge in the synthesized PCN catalyst (UCNNA) for efficient PMS activation. The UCNNA/PMS/vis shows the highest kinetic constants (0.050 min</span><sup>−1</sup>), which is 2.9-fold increase over the PCN/PMS/vis. The experiments and theoretical calculations indicated that niacin as electron acceptor group prevents the recombination of photocarriers in-plane. Simultaneously, niacin can serve as PMS adsorption site, further facilitating electron transfer and the <sup>1</sup>O<sub>2</sub><span><span> generation. Mass spectrometry analysis and Fukui index calculations confirm the priority of lateral chain </span>oxidation (</span><sup>1</sup>O<sub>2</sub> attack site) during atrazine degradation. These results provide new insights into rational design of metal-free catalysts/PMS/vis system, as well as providing guidance and theoretical support for atrazine degradation mechanisms.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337324000043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Carbon nitride with grafted molecular as electron acceptor and active site to achieve efficient photo-activated peroxymonosulfate for organic pollutants removal
The effective activation of peroxymonosulfate (PMS) by polymer carbon nitride (PCN) is hampered by the unpredictable movement and rapid recombination of photocarriers. In this study, niacin served as a beneficial modifier to help constructed the directional electron transfer pathway from the center to the edge in the synthesized PCN catalyst (UCNNA) for efficient PMS activation. The UCNNA/PMS/vis shows the highest kinetic constants (0.050 min−1), which is 2.9-fold increase over the PCN/PMS/vis. The experiments and theoretical calculations indicated that niacin as electron acceptor group prevents the recombination of photocarriers in-plane. Simultaneously, niacin can serve as PMS adsorption site, further facilitating electron transfer and the 1O2 generation. Mass spectrometry analysis and Fukui index calculations confirm the priority of lateral chain oxidation (1O2 attack site) during atrazine degradation. These results provide new insights into rational design of metal-free catalysts/PMS/vis system, as well as providing guidance and theoretical support for atrazine degradation mechanisms.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.