{"title":"通过双纳米空间致密化策略制造具有丰富晶格氧的铂单原子催化剂,以高效催化消除挥发性有机化合物","authors":"Weigao Han , Weitong Ling , Peng Gao , Fang Dong , Zhicheng Tang","doi":"10.1016/j.apcatb.2023.123687","DOIUrl":null,"url":null,"abstract":"<div><p>Precisely constructing Pt single atom catalyst (SACs) with fine-tuned chemical environments is a vitally challenging issue, which has attracted peoples’ attentions. The activation of lattice oxygen linked to active sites is also a great challenge to heterogeneous catalysis. Herein, via a cage-encapsulating strategy, Pt single atom (SA) was accurately constructed by dual nanospace confinement of three-dimensional ordered macroporous (3DOM) CeO<sub>2</sub><span> pore and Ce-MOFs nanocages. During calcination, CeO</span><sub>2</sub> derived from Ce-MOF restricted the migration of Pt SA and prevented its agglomeration. With the construction of CeO<sub>2</sub> nanocage, more active Pt-O<sub>2</sub><span> bond was created. More active lattice oxygen was linked to Pt single atom. DFT calculation also confirmed VOCs molecules were more easily absorbed on the catalyst surface and CO was more easily oxidized to CO</span><sub>2</sub>. The 90% conversion temperature (T<sub>90</sub>) of Pt<sub>1</sub>/CeO<sub>2</sub> @CeO<sub>2</sub>-0.2 (T<sub>90</sub> = 268 °C) was 81 °C lower than the T<sub>90</sub> of Pt<sub>1</sub>/CeO<sub>2</sub> (T<sub>90</sub> = 349 °C) on the catalytic combustion of benzene.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs\",\"authors\":\"Weigao Han , Weitong Ling , Peng Gao , Fang Dong , Zhicheng Tang\",\"doi\":\"10.1016/j.apcatb.2023.123687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precisely constructing Pt single atom catalyst (SACs) with fine-tuned chemical environments is a vitally challenging issue, which has attracted peoples’ attentions. The activation of lattice oxygen linked to active sites is also a great challenge to heterogeneous catalysis. Herein, via a cage-encapsulating strategy, Pt single atom (SA) was accurately constructed by dual nanospace confinement of three-dimensional ordered macroporous (3DOM) CeO<sub>2</sub><span> pore and Ce-MOFs nanocages. During calcination, CeO</span><sub>2</sub> derived from Ce-MOF restricted the migration of Pt SA and prevented its agglomeration. With the construction of CeO<sub>2</sub> nanocage, more active Pt-O<sub>2</sub><span> bond was created. More active lattice oxygen was linked to Pt single atom. DFT calculation also confirmed VOCs molecules were more easily absorbed on the catalyst surface and CO was more easily oxidized to CO</span><sub>2</sub>. The 90% conversion temperature (T<sub>90</sub>) of Pt<sub>1</sub>/CeO<sub>2</sub> @CeO<sub>2</sub>-0.2 (T<sub>90</sub> = 268 °C) was 81 °C lower than the T<sub>90</sub> of Pt<sub>1</sub>/CeO<sub>2</sub> (T<sub>90</sub> = 349 °C) on the catalytic combustion of benzene.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337323013309\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013309","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs
Precisely constructing Pt single atom catalyst (SACs) with fine-tuned chemical environments is a vitally challenging issue, which has attracted peoples’ attentions. The activation of lattice oxygen linked to active sites is also a great challenge to heterogeneous catalysis. Herein, via a cage-encapsulating strategy, Pt single atom (SA) was accurately constructed by dual nanospace confinement of three-dimensional ordered macroporous (3DOM) CeO2 pore and Ce-MOFs nanocages. During calcination, CeO2 derived from Ce-MOF restricted the migration of Pt SA and prevented its agglomeration. With the construction of CeO2 nanocage, more active Pt-O2 bond was created. More active lattice oxygen was linked to Pt single atom. DFT calculation also confirmed VOCs molecules were more easily absorbed on the catalyst surface and CO was more easily oxidized to CO2. The 90% conversion temperature (T90) of Pt1/CeO2 @CeO2-0.2 (T90 = 268 °C) was 81 °C lower than the T90 of Pt1/CeO2 (T90 = 349 °C) on the catalytic combustion of benzene.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.