Katherine E. Riojas, Trevor L. Bruns, Josephine Granna, Miriam R. Smetak, Robert F. Labadie, Robert J. Webster III
{"title":"利用实时阻抗感应推断插入过程中的直人工耳蜗电极阵列定位","authors":"Katherine E. Riojas, Trevor L. Bruns, Josephine Granna, Miriam R. Smetak, Robert F. Labadie, Robert J. Webster III","doi":"10.1002/rcs.2609","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We investigate the use of impedance sensing to infer the progression of an EA during insertion.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards inferring positioning of straight cochlear-implant electrode arrays during insertion using real-time impedance sensing\",\"authors\":\"Katherine E. Riojas, Trevor L. Bruns, Josephine Granna, Miriam R. Smetak, Robert F. Labadie, Robert J. Webster III\",\"doi\":\"10.1002/rcs.2609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We investigate the use of impedance sensing to infer the progression of an EA during insertion.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.</p>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Towards inferring positioning of straight cochlear-implant electrode arrays during insertion using real-time impedance sensing
Background
Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation.
Methods
We investigate the use of impedance sensing to infer the progression of an EA during insertion.
Results
We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time.
Conclusion
The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.