{"title":"不同加热速率对混合火灾模拟实时度的影响","authors":"Faranak Faghihi, Markus Knobloch","doi":"10.1007/s10694-023-01527-z","DOIUrl":null,"url":null,"abstract":"<div><p>Global fire performance of structures in fire is proven to be more advantageous in many cases of engineering practice than the prescriptive fire resistance based on isolated structural member testing. Hybrid fire simulation (HFS) is a novel well-suited method trending in recent years for analysis of global performance of structures in fire. In the principles of this method, the part of a structure which has unknown behavior or is uncertain to be numerically modeled (subjected to fire) would be physically tested, while the rest of the structure is numerically simulated. HFS method enables capturing the beneficial interaction mechanisms evolving between fire-exposed structural members and the adjacent cooler substructure. Due to the continuous temperature increase in a fire test and the existing thermal inertia as well as the rate- and temperature-dependent material behavior of structures exposed to fire, a real-time performance in hybrid fire simulation counts as a necessity. This challenge is more critical for hybrid fire simulations with higher applied heating rates relevant to structural fire engineering. Within scope of this paper, (a) a robust and rigorous approach for real-time HFS is presented; (b) a series of proof-of-concept studies of different hybrid fire simulations with various applied heating rates are carried out for a thermomechanical benchmark problem; (c) the important results of four representative hybrid fire simulations with relevant heating rates to structural fire engineering are discussed; (d) the importance of an appropriate calculation method for stiffness update of the fire-exposed structural member over HFS procedure is highlighted, and e) the precision and accuracy of the applied HFS approach with respect to interface error and real-time degree are evidenced.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-023-01527-z.pdf","citationCount":"0","resultStr":"{\"title\":\"The Impact of Various Heating Rates on Real-Time Degree of Hybrid Fire Simulation\",\"authors\":\"Faranak Faghihi, Markus Knobloch\",\"doi\":\"10.1007/s10694-023-01527-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global fire performance of structures in fire is proven to be more advantageous in many cases of engineering practice than the prescriptive fire resistance based on isolated structural member testing. Hybrid fire simulation (HFS) is a novel well-suited method trending in recent years for analysis of global performance of structures in fire. In the principles of this method, the part of a structure which has unknown behavior or is uncertain to be numerically modeled (subjected to fire) would be physically tested, while the rest of the structure is numerically simulated. HFS method enables capturing the beneficial interaction mechanisms evolving between fire-exposed structural members and the adjacent cooler substructure. Due to the continuous temperature increase in a fire test and the existing thermal inertia as well as the rate- and temperature-dependent material behavior of structures exposed to fire, a real-time performance in hybrid fire simulation counts as a necessity. This challenge is more critical for hybrid fire simulations with higher applied heating rates relevant to structural fire engineering. Within scope of this paper, (a) a robust and rigorous approach for real-time HFS is presented; (b) a series of proof-of-concept studies of different hybrid fire simulations with various applied heating rates are carried out for a thermomechanical benchmark problem; (c) the important results of four representative hybrid fire simulations with relevant heating rates to structural fire engineering are discussed; (d) the importance of an appropriate calculation method for stiffness update of the fire-exposed structural member over HFS procedure is highlighted, and e) the precision and accuracy of the applied HFS approach with respect to interface error and real-time degree are evidenced.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10694-023-01527-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-023-01527-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01527-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The Impact of Various Heating Rates on Real-Time Degree of Hybrid Fire Simulation
Global fire performance of structures in fire is proven to be more advantageous in many cases of engineering practice than the prescriptive fire resistance based on isolated structural member testing. Hybrid fire simulation (HFS) is a novel well-suited method trending in recent years for analysis of global performance of structures in fire. In the principles of this method, the part of a structure which has unknown behavior or is uncertain to be numerically modeled (subjected to fire) would be physically tested, while the rest of the structure is numerically simulated. HFS method enables capturing the beneficial interaction mechanisms evolving between fire-exposed structural members and the adjacent cooler substructure. Due to the continuous temperature increase in a fire test and the existing thermal inertia as well as the rate- and temperature-dependent material behavior of structures exposed to fire, a real-time performance in hybrid fire simulation counts as a necessity. This challenge is more critical for hybrid fire simulations with higher applied heating rates relevant to structural fire engineering. Within scope of this paper, (a) a robust and rigorous approach for real-time HFS is presented; (b) a series of proof-of-concept studies of different hybrid fire simulations with various applied heating rates are carried out for a thermomechanical benchmark problem; (c) the important results of four representative hybrid fire simulations with relevant heating rates to structural fire engineering are discussed; (d) the importance of an appropriate calculation method for stiffness update of the fire-exposed structural member over HFS procedure is highlighted, and e) the precision and accuracy of the applied HFS approach with respect to interface error and real-time degree are evidenced.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.