B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du
{"title":"在破碎的城市环境中,同域昆虫在不同选择性力量作用下的体型变化","authors":"B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du","doi":"10.1111/jzo.13143","DOIUrl":null,"url":null,"abstract":"<p>Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket <i>Gryllus chinensis</i> and the stove grasshopper <i>Diestrammena japonica</i>, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.</p>","PeriodicalId":17600,"journal":{"name":"Journal of Zoology","volume":"322 4","pages":"318-328"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Body size shift in sympatric insects in response to distinct selective forces in fragmented urban environments\",\"authors\":\"B.-Y. Jia, R.-Y. Xu, Z.-H. Shi, N.-N. Sun, R. Xu, S.-H. Wu, L.-F. Gao, B. Du\",\"doi\":\"10.1111/jzo.13143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket <i>Gryllus chinensis</i> and the stove grasshopper <i>Diestrammena japonica</i>, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.</p>\",\"PeriodicalId\":17600,\"journal\":{\"name\":\"Journal of Zoology\",\"volume\":\"322 4\",\"pages\":\"318-328\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13143\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Body size shift in sympatric insects in response to distinct selective forces in fragmented urban environments
Phenotypic plasticity, which encompasses the diversification of both irreversible and reversible traits, has long been considered an adaptive response by animals to varying environmental conditions. However, the process by which irreversible and reversible traits are coordinated to form an adaptive response to the changing environment has yet to be clarified. Here, we investigated the variation in body size of two urban insect species in the context of habitat fragmentation. These species were the Chinese cricket Gryllus chinensis and the stove grasshopper Diestrammena japonica, which are sympatric in urban housing estates. Results indicated that both species changed in body size in patches of urban environment. However, their body size shifts showed opposite tendencies and were influenced by distinct selective forces: Chinese crickets increased their body size with the patch history and predation risk, whereas stove grasshoppers decreased their body size with the degree of fragmentation of the patches. Territorial and competitive Chinese crickets rarely experience resource scarcity during urban environment fragmentation. Thus, a larger body size was preferred in response to intraspecific competition among Chinese crickets. By contrast, stove grasshoppers are group-living and scramble for resources as competitors, requiring a large territory to secure adequate food for supporting a group of individuals. Consequently, stove grasshoppers frequently experienced resource scarcity in the patchy habitat, favoring small body size to reduce individual requirements throughout the life cycle. Our findings indicate that the body size shift of sympatric insects may be subjected to distinct selective forces in fragmented habitats, depending primarily on their reversible traits.
期刊介绍:
The Journal of Zoology publishes high-quality research papers that are original and are of broad interest. The Editors seek studies that are hypothesis-driven and interdisciplinary in nature. Papers on animal behaviour, ecology, physiology, anatomy, developmental biology, evolution, systematics, genetics and genomics will be considered; research that explores the interface between these disciplines is strongly encouraged. Studies dealing with geographically and/or taxonomically restricted topics should test general hypotheses, describe novel findings or have broad implications.
The Journal of Zoology aims to maintain an effective but fair peer-review process that recognises research quality as a combination of the relevance, approach and execution of a research study.