半完整数图中的弧-不相连外分支和内分支

Pub Date : 2024-01-03 DOI:10.1002/jgt.23072
J. Bang-Jensen, Y. Wang
{"title":"半完整数图中的弧-不相连外分支和内分支","authors":"J. Bang-Jensen,&nbsp;Y. Wang","doi":"10.1002/jgt.23072","DOIUrl":null,"url":null,"abstract":"<p>An out-branching <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n \n <mi>u</mi>\n \n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${B}_{u}^{+}$</annotation>\n </semantics></math> (in-branching <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n \n <mi>u</mi>\n \n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> ${B}_{u}^{-}$</annotation>\n </semantics></math>) in a digraph <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> is a connected spanning subdigraph of <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math> in which every vertex except the vertex <math>\n <semantics>\n <mrow>\n <mi>u</mi>\n </mrow>\n <annotation> $u$</annotation>\n </semantics></math>, called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> arc-disjoint out-branchings with prescribed roots (<math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is <i>semicomplete</i> if it has no pair of nonadjacent vertices. A <i>tournament</i> is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n \n <mi>u</mi>\n \n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${B}_{u}^{+}$</annotation>\n </semantics></math> which is arc-disjoint from some in-branching <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n \n <mi>v</mi>\n \n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> ${B}_{v}^{-}$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n <annotation> $u,v$</annotation>\n </semantics></math> are prescribed vertices of <math>\n <semantics>\n <mrow>\n <mi>D</mi>\n </mrow>\n <annotation> $D$</annotation>\n </semantics></math>. Our characterization, which is surprisingly simple, generalizes a complicated characterization for tournaments from 1991 by the first author and our proof implies the existence of a polynomial algorithm for checking whether a given semicomplete digraph has such a pair of branchings for prescribed vertices <math>\n <semantics>\n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n <annotation> $u,v$</annotation>\n </semantics></math> and construct a solution if one exists. This confirms a conjecture of Bang-Jensen for the case of semicomplete digraphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arc-disjoint out-branchings and in-branchings in semicomplete digraphs\",\"authors\":\"J. Bang-Jensen,&nbsp;Y. Wang\",\"doi\":\"10.1002/jgt.23072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An out-branching <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n \\n <mi>u</mi>\\n \\n <mo>+</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${B}_{u}^{+}$</annotation>\\n </semantics></math> (in-branching <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n \\n <mi>u</mi>\\n \\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${B}_{u}^{-}$</annotation>\\n </semantics></math>) in a digraph <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> is a connected spanning subdigraph of <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math> in which every vertex except the vertex <math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <annotation> $u$</annotation>\\n </semantics></math>, called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> arc-disjoint out-branchings with prescribed roots (<math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is <i>semicomplete</i> if it has no pair of nonadjacent vertices. A <i>tournament</i> is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n \\n <mi>u</mi>\\n \\n <mo>+</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${B}_{u}^{+}$</annotation>\\n </semantics></math> which is arc-disjoint from some in-branching <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n \\n <mi>v</mi>\\n \\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${B}_{v}^{-}$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n <annotation> $u,v$</annotation>\\n </semantics></math> are prescribed vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>D</mi>\\n </mrow>\\n <annotation> $D$</annotation>\\n </semantics></math>. Our characterization, which is surprisingly simple, generalizes a complicated characterization for tournaments from 1991 by the first author and our proof implies the existence of a polynomial algorithm for checking whether a given semicomplete digraph has such a pair of branchings for prescribed vertices <math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n <annotation> $u,v$</annotation>\\n </semantics></math> and construct a solution if one exists. This confirms a conjecture of Bang-Jensen for the case of semicomplete digraphs.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数图 D$D$ 中的外分支 Bu+${B}_{u}^{+}$(内分支 Bu-${B}_{u}^{-}$)是 D$D$ 的连跨子数图,其中除了顶点 u$u$(称为根)之外,每个顶点的内(外)度都是 1。众所周知,存在一种多项式算法来判定给定的图是否有 k$k$ 个带有规定根(k$k$ 是输入的一部分)的弧异节外分支。与此形成鲜明对比的是,判断一个数图是否有一个与某个内支弧相交的外支已经是 NP-complete。如果一个数图没有一对不相邻的顶点,那么它就是半完全数图。本文给出了半完整数图的完整分类,这些数图有一个外分支 Bu+${B}_{u}^{+}$,它与某个内分支 Bv-${B}_{v}^{-}$ 是弧相交的,其中 u,v$u,v$ 是 D$D$ 的规定顶点。我们的特征描述出奇地简单,它概括了第一作者 1991 年对锦标赛的复杂特征描述。我们的证明意味着存在一种多项式算法,可以检查给定的半完全数图是否有这样一对规定顶点 u,v$u,v$ 的分支,如果存在,则构建一个解。这证实了班-简森关于半完全图的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Arc-disjoint out-branchings and in-branchings in semicomplete digraphs

An out-branching B u + ${B}_{u}^{+}$ (in-branching B u ${B}_{u}^{-}$ ) in a digraph D $D$ is a connected spanning subdigraph of D $D$ in which every vertex except the vertex u $u$ , called the root, has in-degree (out-degree) one. It is well known that there exists a polynomial algorithm for deciding whether a given digraph has k $k$ arc-disjoint out-branchings with prescribed roots ( k $k$ is part of the input). In sharp contrast to this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint from some in-branching. A digraph is semicomplete if it has no pair of nonadjacent vertices. A tournament is a semicomplete digraph without directed cycles of length 2. In this paper we give a complete classification of semicomplete digraphs that have an out-branching B u + ${B}_{u}^{+}$ which is arc-disjoint from some in-branching B v ${B}_{v}^{-}$ where u , v $u,v$ are prescribed vertices of D $D$ . Our characterization, which is surprisingly simple, generalizes a complicated characterization for tournaments from 1991 by the first author and our proof implies the existence of a polynomial algorithm for checking whether a given semicomplete digraph has such a pair of branchings for prescribed vertices u , v $u,v$ and construct a solution if one exists. This confirms a conjecture of Bang-Jensen for the case of semicomplete digraphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信