带内插约束的单边、交织、正多项式和共正多项式近似法

IF 0.9 3区 数学 Q2 MATHEMATICS
German Dzyubenko , Kirill A. Kopotun
{"title":"带内插约束的单边、交织、正多项式和共正多项式近似法","authors":"German Dzyubenko ,&nbsp;Kirill A. Kopotun","doi":"10.1016/j.jat.2023.106012","DOIUrl":null,"url":null,"abstract":"<div><p>Given <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a nonnegative function <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, an arbitrary finite collection of points <span><math><mrow><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>⊂</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span><span>, and a corresponding collection of nonnegative integers </span><span><math><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mi>r</mi></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></math></span>, is it true that, for sufficiently large <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, there exists a polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mi>n</mi></math></span> such that</p><p>(i) <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msup><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>;</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the classical <span><math><mi>k</mi></math></span>th modulus of smoothness.</p><p>(ii) <span><math><mrow><msup><mrow><mi>P</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ν</mi><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> and all <span><math><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></math></span>,</p><p>and</p><p>(iii) either <span><math><mrow><mi>P</mi><mo>≥</mo><mi>f</mi></mrow></math></span> on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span> (<em>onesided</em> approximation), or <span><math><mrow><mi>P</mi><mo>≥</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span> (<em>positive</em> approximation)?</p><p>We provide <em>precise answers</em> not only to this question, but also to similar questions for more general <em>intertwining</em> and <em>copositive</em><span> polynomial approximation. It turns out that many of these answers are quite unexpected.</span></p><p>We also show that, in general, similar questions for <span><math><mi>q</mi></math></span>-monotone approximation with <span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span> have negative answers, <em>i.e.,</em> <span><math><mi>q</mi></math></span>-monotone approximation with general interpolatory constraints is impossible if <span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onesided, intertwining, positive and copositive polynomial approximation with interpolatory constraints\",\"authors\":\"German Dzyubenko ,&nbsp;Kirill A. Kopotun\",\"doi\":\"10.1016/j.jat.2023.106012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a nonnegative function <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, an arbitrary finite collection of points <span><math><mrow><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub><mo>⊂</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span><span>, and a corresponding collection of nonnegative integers </span><span><math><msub><mrow><mrow><mo>{</mo><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></msub></math></span> with <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mi>r</mi></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></math></span>, is it true that, for sufficiently large <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, there exists a polynomial <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of degree <span><math><mi>n</mi></math></span> such that</p><p>(i) <span><math><mrow><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><msubsup><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msup><mo>,</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>;</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≔</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the classical <span><math><mi>k</mi></math></span>th modulus of smoothness.</p><p>(ii) <span><math><mrow><msup><mrow><mi>P</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, for all <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ν</mi><mo>≤</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> and all <span><math><mrow><mi>i</mi><mo>∈</mo><mi>J</mi></mrow></math></span>,</p><p>and</p><p>(iii) either <span><math><mrow><mi>P</mi><mo>≥</mo><mi>f</mi></mrow></math></span> on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span> (<em>onesided</em> approximation), or <span><math><mrow><mi>P</mi><mo>≥</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span> (<em>positive</em> approximation)?</p><p>We provide <em>precise answers</em> not only to this question, but also to similar questions for more general <em>intertwining</em> and <em>copositive</em><span> polynomial approximation. It turns out that many of these answers are quite unexpected.</span></p><p>We also show that, in general, similar questions for <span><math><mi>q</mi></math></span>-monotone approximation with <span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span> have negative answers, <em>i.e.,</em> <span><math><mi>q</mi></math></span>-monotone approximation with general interpolatory constraints is impossible if <span><math><mrow><mi>q</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904523001508\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001508","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定 k∈N,一个非负函数 f∈Cr[a,b],r≥0,一个任意有限点集合 {αi}i∈J⊂[a,b],以及一个相应的非负整数集合 {mi}i∈J 且 0≤mi≤r、i∈J,那么对于足够大的 n∈N,是否存在一个阶数为 n 的多项式 Pn,使得(i) |f(x)-Pn(x)|≤cρnr(x)ωk(f(r),ρn(x);[a,b]),x∈[a,b],其中 ρn(x)≔n-11-x2+n-2,ωk 是经典的第 k 个平滑模。(ii) P(ν)(αi)=f(ν)(αi), for all 0≤ν≤mi and all i∈J,and(iii) either P≥f on [a,b] (onesided approximation), or P≥0 on [a,b] (positive approximation)?我们还证明,一般来说,对于 q≥1 的 q 单调逼近的类似问题,答案是否定的,也就是说,如果 q≥1 时,带有一般内插约束的 q 单调逼近是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Onesided, intertwining, positive and copositive polynomial approximation with interpolatory constraints

Given kN, a nonnegative function fCr[a,b], r0, an arbitrary finite collection of points {αi}iJ[a,b], and a corresponding collection of nonnegative integers {mi}iJ with 0mir, iJ, is it true that, for sufficiently large nN, there exists a polynomial Pn of degree n such that

(i) |f(x)Pn(x)|cρnr(x)ωk(f(r),ρn(x);[a,b]), x[a,b], where ρn(x)n11x2+n2 and ωk is the classical kth modulus of smoothness.

(ii) P(ν)(αi)=f(ν)(αi), for all 0νmi and all iJ,

and

(iii) either Pf on [a,b] (onesided approximation), or P0 on [a,b] (positive approximation)?

We provide precise answers not only to this question, but also to similar questions for more general intertwining and copositive polynomial approximation. It turns out that many of these answers are quite unexpected.

We also show that, in general, similar questions for q-monotone approximation with q1 have negative answers, i.e., q-monotone approximation with general interpolatory constraints is impossible if q1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信