Rassu Pietro , Cappai Luca , Stagi Luigi , Liu Ruirui , Enzo Stefano , Mulas Gabriele , Garroni Sebastiano , Malfatti Luca , Innocenzi Plinio , Ma Xiaojie , Wang Bo
{"title":"阐明电荷转移机制及其对可蜕变 MIL-125(Ti)光诱导反应性的影响","authors":"Rassu Pietro , Cappai Luca , Stagi Luigi , Liu Ruirui , Enzo Stefano , Mulas Gabriele , Garroni Sebastiano , Malfatti Luca , Innocenzi Plinio , Ma Xiaojie , Wang Bo","doi":"10.1016/j.apcatb.2024.123692","DOIUrl":null,"url":null,"abstract":"<div><p>Alcohol and water photooxidation reactions are employed in concert with optical spectroscopy analyses to demonstrate the occurrence of multiple and distinctive charge-transfer (CT) mechanisms in the environmental photocatalyst MIL-125(Ti). The contribution of ligand-to-metal CT (LMCT) mechanisms increases at wavelengths lower than 320 nm while that of node oxygen-to-metal CT (OMCT) mechanisms increases at longer wavelengths. The localization of photogenerated holes on different atoms leads to a selective reactivity of the framework depending on the mechanism and, during hydroxylation processes, to its spontaneous transition to the isostructural MIL-125-OH(Ti) and the development of an additional LMCT mechanism with a long-lived emission. Furthermore, a previously unidentified and extrinsic CT mechanism is spectroscopically related to the formation of terephthalate-based oligomers. The coexistence of distinctive CT mechanisms in MIL-125(Ti) implies their critical role in catalyst efficiency, and mastering them proves to be a powerful and simple strategy to produce the valuable MIL-125-OH(Ti).</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating charge-transfer mechanisms and their effect on the light-induced reactivity of metastable MIL-125(Ti)\",\"authors\":\"Rassu Pietro , Cappai Luca , Stagi Luigi , Liu Ruirui , Enzo Stefano , Mulas Gabriele , Garroni Sebastiano , Malfatti Luca , Innocenzi Plinio , Ma Xiaojie , Wang Bo\",\"doi\":\"10.1016/j.apcatb.2024.123692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alcohol and water photooxidation reactions are employed in concert with optical spectroscopy analyses to demonstrate the occurrence of multiple and distinctive charge-transfer (CT) mechanisms in the environmental photocatalyst MIL-125(Ti). The contribution of ligand-to-metal CT (LMCT) mechanisms increases at wavelengths lower than 320 nm while that of node oxygen-to-metal CT (OMCT) mechanisms increases at longer wavelengths. The localization of photogenerated holes on different atoms leads to a selective reactivity of the framework depending on the mechanism and, during hydroxylation processes, to its spontaneous transition to the isostructural MIL-125-OH(Ti) and the development of an additional LMCT mechanism with a long-lived emission. Furthermore, a previously unidentified and extrinsic CT mechanism is spectroscopically related to the formation of terephthalate-based oligomers. The coexistence of distinctive CT mechanisms in MIL-125(Ti) implies their critical role in catalyst efficiency, and mastering them proves to be a powerful and simple strategy to produce the valuable MIL-125-OH(Ti).</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337324000031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Elucidating charge-transfer mechanisms and their effect on the light-induced reactivity of metastable MIL-125(Ti)
Alcohol and water photooxidation reactions are employed in concert with optical spectroscopy analyses to demonstrate the occurrence of multiple and distinctive charge-transfer (CT) mechanisms in the environmental photocatalyst MIL-125(Ti). The contribution of ligand-to-metal CT (LMCT) mechanisms increases at wavelengths lower than 320 nm while that of node oxygen-to-metal CT (OMCT) mechanisms increases at longer wavelengths. The localization of photogenerated holes on different atoms leads to a selective reactivity of the framework depending on the mechanism and, during hydroxylation processes, to its spontaneous transition to the isostructural MIL-125-OH(Ti) and the development of an additional LMCT mechanism with a long-lived emission. Furthermore, a previously unidentified and extrinsic CT mechanism is spectroscopically related to the formation of terephthalate-based oligomers. The coexistence of distinctive CT mechanisms in MIL-125(Ti) implies their critical role in catalyst efficiency, and mastering them proves to be a powerful and simple strategy to produce the valuable MIL-125-OH(Ti).
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.