{"title":"在微泵设计中应用离子浓度极化的数值研究","authors":"Khai H. Nguyen, Dung T. Nguyen, Van-Sang Pham","doi":"10.1016/j.elstat.2023.103885","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work focuses on applying the phenomenon of ion concentration polarization to design and investigate a </span>micropump model that is a kind of electroosmotic micropump. Numerical study is conducted for ion concentration polarization in the manner that generates electro-osmosis flow and pumping effect. The formation of the extended space charge layer and the actions of the electric field upon this layer is applied to generate electro-osmosis flow to drive flow in the system. It is clarified that pumping effect can be enhanced by improving the geometry configurations. Multiple simulations are conducted to obtain an optimal micropump design.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study on applying ion concentration polarization in micropump design\",\"authors\":\"Khai H. Nguyen, Dung T. Nguyen, Van-Sang Pham\",\"doi\":\"10.1016/j.elstat.2023.103885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This work focuses on applying the phenomenon of ion concentration polarization to design and investigate a </span>micropump model that is a kind of electroosmotic micropump. Numerical study is conducted for ion concentration polarization in the manner that generates electro-osmosis flow and pumping effect. The formation of the extended space charge layer and the actions of the electric field upon this layer is applied to generate electro-osmosis flow to drive flow in the system. It is clarified that pumping effect can be enhanced by improving the geometry configurations. Multiple simulations are conducted to obtain an optimal micropump design.</p></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388623000943\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388623000943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A numerical study on applying ion concentration polarization in micropump design
This work focuses on applying the phenomenon of ion concentration polarization to design and investigate a micropump model that is a kind of electroosmotic micropump. Numerical study is conducted for ion concentration polarization in the manner that generates electro-osmosis flow and pumping effect. The formation of the extended space charge layer and the actions of the electric field upon this layer is applied to generate electro-osmosis flow to drive flow in the system. It is clarified that pumping effect can be enhanced by improving the geometry configurations. Multiple simulations are conducted to obtain an optimal micropump design.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.