电流体力学中出现的电扩散模型的全局零松弛极限问题

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1119-2
Ming-hua Yang, Si-ming Huang, Jin-yi Sun
{"title":"电流体力学中出现的电扩散模型的全局零松弛极限问题","authors":"Ming-hua Yang,&nbsp;Si-ming Huang,&nbsp;Jin-yi Sun","doi":"10.1007/s10255-024-1119-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of </p><div><div><span>$$\\left\\{ \\begin{gathered}\n\\begin{array}{*{20}{c}}\n{u_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {u^\\varepsilon } - \\Delta {u^\\varepsilon } + \\nabla {P^\\varepsilon } = \\Delta {\\phi ^\\varepsilon }\\nabla {\\phi ^\\varepsilon },}&amp;{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{\\nabla\\cdot {u^\\varepsilon } = 0,}&amp;{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{n_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {n^\\varepsilon } - \\Delta {n^\\varepsilon } =- \\nabla\\cdot ({n^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&amp;{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{c_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {c^\\varepsilon } - \\Delta {c^\\varepsilon } = \\nabla\\cdot ({c^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&amp;{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{{\\varepsilon ^{ - 1}}\\phi _t^\\varepsilon= \\Delta {\\phi ^\\varepsilon } - {n^\\varepsilon } + {c^\\varepsilon },}&amp;{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{({u^\\varepsilon },{n^\\varepsilon },{c^\\varepsilon },{\\phi ^\\varepsilon })\\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\\phi _0})},} \\right.}&amp;{in{\\text{ }}{\\mathbb{R}^3}} \n\\end{array} \\hfill \\\\ \n\\end{gathered}\\right.$$</span></div></div><p> involving with a positive, large parameter <i>ϵ</i>. The present work show a case that (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) stabilizes to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>):= (<i>u, n, c</i>) uniformly with respect to the time variable as <i>ϵ</i> → + ∞ with respect to the strong topology in a certain Fourier-Herz space.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics\",\"authors\":\"Ming-hua Yang,&nbsp;Si-ming Huang,&nbsp;Jin-yi Sun\",\"doi\":\"10.1007/s10255-024-1119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of </p><div><div><span>$$\\\\left\\\\{ \\\\begin{gathered}\\n\\\\begin{array}{*{20}{c}}\\n{u_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {u^\\\\varepsilon } - \\\\Delta {u^\\\\varepsilon } + \\\\nabla {P^\\\\varepsilon } = \\\\Delta {\\\\phi ^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon },}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{\\\\nabla\\\\cdot {u^\\\\varepsilon } = 0,}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\n\\\\end{array} \\\\hfill \\\\\\\\begin{array}{*{20}{c}}\\n{n_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {n^\\\\varepsilon } - \\\\Delta {n^\\\\varepsilon } =- \\\\nabla\\\\cdot ({n^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon }),}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{c_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {c^\\\\varepsilon } - \\\\Delta {c^\\\\varepsilon } = \\\\nabla\\\\cdot ({c^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon }),}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\n\\\\end{array} \\\\hfill \\\\\\\\begin{array}{*{20}{c}}\\n{{\\\\varepsilon ^{ - 1}}\\\\phi _t^\\\\varepsilon= \\\\Delta {\\\\phi ^\\\\varepsilon } - {n^\\\\varepsilon } + {c^\\\\varepsilon },}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{({u^\\\\varepsilon },{n^\\\\varepsilon },{c^\\\\varepsilon },{\\\\phi ^\\\\varepsilon })\\\\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\\\\phi _0})},} \\\\right.}&amp;{in{\\\\text{ }}{\\\\mathbb{R}^3}} \\n\\\\end{array} \\\\hfill \\\\\\\\ \\n\\\\end{gathered}\\\\right.$$</span></div></div><p> involving with a positive, large parameter <i>ϵ</i>. The present work show a case that (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) stabilizes to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>):= (<i>u, n, c</i>) uniformly with respect to the time variable as <i>ϵ</i> → + ∞ with respect to the strong topology in a certain Fourier-Herz space.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1119-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1119-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了电流体力学中产生的电扩散模型的全局零松弛极限问题,该模型是普朗克-恩斯特-泊松方程和纳维-斯托克斯方程的耦合。也就是说,本文讨论的是一个奇异极限问题:$$\left\{ \begin{gathered}\begin{array}{*{20}{c}}{u_t^\varepsilon+ {u^\varepsilon }。\cdot \nabla {u^\varepsilon }- \Delta {u^\varepsilon }+ \nabla {P^\varepsilon }= \Delta {\phi ^\varepsilon }\nabla {phi ^\varepsilon },}&{in{text{ }}\{mathbb{R}^3}\times (0,/infty )} ({u^\varepsilon } = 0,}&{u^\varepsilon}}。= 0,}&{in{text{ }}{mathbb{R}^3}\times (0,/infty )} (end{array})\hfill\begin{array}{*{20}{c}}{n_t^\varepsilon+ {u^\varepsilon }\nabla {n^\varepsilon }- \Delta {n^\varepsilon }=- ({n^\varepsilon }\nabla {\phi ^\varepsilon }),}&{in(text{ }}{mathbb{R}^3}}.\{c_t^\varepsilon+ {u^\varepsilon }\(cdot ) (nabla {c^\varepsilon }- \Delta {c^\varepsilon }= ({c^\varepsilon }\nabla {\phi ^\varepsilon }),}&{in{text{ }}{mathbb{R}^3}}.\times (0,/infty )} (end{array})\hfill (begin{array}{*{20}{c}}{{\varepsilon ^{ -1}}\phi _t^\varepsilon= \Delta {\phi ^\varepsilon }- {n^\varepsilon }+ {c^\varepsilon },}&{in {\text{ }}{mathbb{R}^3}\times (0,\infty )} ({({u^\varepsilon },{n^\varepsilon },{c^\varepsilon },{\phi ^\varepsilon })\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\phi _0})},} \right.}&{in{\text{ }}{mathbb{R}^3}}.\end{array}\$ 涉及一个正的、大的参数ϵ。本研究展示了一种情况,即(uϵ, nϵ, cϵ)稳定为(u∞, n∞, c∞):= (u, n, c),时间变量均匀为ϵ → + ∞,与某一傅里叶-赫兹空间中的强拓扑有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics

In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of

$$\left\{ \begin{gathered} \begin{array}{*{20}{c}} {u_t^\varepsilon+ {u^\varepsilon } \cdot \nabla {u^\varepsilon } - \Delta {u^\varepsilon } + \nabla {P^\varepsilon } = \Delta {\phi ^\varepsilon }\nabla {\phi ^\varepsilon },}&{in{\text{ }}{\mathbb{R}^3} \times (0,\infty )} \\ {\nabla\cdot {u^\varepsilon } = 0,}&{in{\text{ }}{\mathbb{R}^3} \times (0,\infty )} \end{array} \hfill \\begin{array}{*{20}{c}} {n_t^\varepsilon+ {u^\varepsilon } \cdot \nabla {n^\varepsilon } - \Delta {n^\varepsilon } =- \nabla\cdot ({n^\varepsilon }\nabla {\phi ^\varepsilon }),}&{in{\text{ }}{\mathbb{R}^3} \times (0,\infty )} \\ {c_t^\varepsilon+ {u^\varepsilon } \cdot \nabla {c^\varepsilon } - \Delta {c^\varepsilon } = \nabla\cdot ({c^\varepsilon }\nabla {\phi ^\varepsilon }),}&{in{\text{ }}{\mathbb{R}^3} \times (0,\infty )} \end{array} \hfill \\begin{array}{*{20}{c}} {{\varepsilon ^{ - 1}}\phi _t^\varepsilon= \Delta {\phi ^\varepsilon } - {n^\varepsilon } + {c^\varepsilon },}&{in{\text{ }}{\mathbb{R}^3} \times (0,\infty )} \\ {({u^\varepsilon },{n^\varepsilon },{c^\varepsilon },{\phi ^\varepsilon })\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\phi _0})},} \right.}&{in{\text{ }}{\mathbb{R}^3}} \end{array} \hfill \\ \end{gathered}\right.$$

involving with a positive, large parameter ϵ. The present work show a case that (uϵ, nϵ, cϵ) stabilizes to (u, n, c):= (u, n, c) uniformly with respect to the time variable as ϵ → + ∞ with respect to the strong topology in a certain Fourier-Herz space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信