{"title":"电流体力学中出现的电扩散模型的全局零松弛极限问题","authors":"Ming-hua Yang, Si-ming Huang, Jin-yi Sun","doi":"10.1007/s10255-024-1119-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of </p><div><div><span>$$\\left\\{ \\begin{gathered}\n\\begin{array}{*{20}{c}}\n{u_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {u^\\varepsilon } - \\Delta {u^\\varepsilon } + \\nabla {P^\\varepsilon } = \\Delta {\\phi ^\\varepsilon }\\nabla {\\phi ^\\varepsilon },}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{\\nabla\\cdot {u^\\varepsilon } = 0,}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{n_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {n^\\varepsilon } - \\Delta {n^\\varepsilon } =- \\nabla\\cdot ({n^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{c_t^\\varepsilon+ {u^\\varepsilon } \\cdot \\nabla {c^\\varepsilon } - \\Delta {c^\\varepsilon } = \\nabla\\cdot ({c^\\varepsilon }\\nabla {\\phi ^\\varepsilon }),}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \n\\end{array} \\hfill \\\\begin{array}{*{20}{c}}\n{{\\varepsilon ^{ - 1}}\\phi _t^\\varepsilon= \\Delta {\\phi ^\\varepsilon } - {n^\\varepsilon } + {c^\\varepsilon },}&{in{\\text{ }}{\\mathbb{R}^3} \\times (0,\\infty )} \\\\ \n{({u^\\varepsilon },{n^\\varepsilon },{c^\\varepsilon },{\\phi ^\\varepsilon })\\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\\phi _0})},} \\right.}&{in{\\text{ }}{\\mathbb{R}^3}} \n\\end{array} \\hfill \\\\ \n\\end{gathered}\\right.$$</span></div></div><p> involving with a positive, large parameter <i>ϵ</i>. The present work show a case that (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) stabilizes to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>):= (<i>u, n, c</i>) uniformly with respect to the time variable as <i>ϵ</i> → + ∞ with respect to the strong topology in a certain Fourier-Herz space.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"241 - 268"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics\",\"authors\":\"Ming-hua Yang, Si-ming Huang, Jin-yi Sun\",\"doi\":\"10.1007/s10255-024-1119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of </p><div><div><span>$$\\\\left\\\\{ \\\\begin{gathered}\\n\\\\begin{array}{*{20}{c}}\\n{u_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {u^\\\\varepsilon } - \\\\Delta {u^\\\\varepsilon } + \\\\nabla {P^\\\\varepsilon } = \\\\Delta {\\\\phi ^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon },}&{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{\\\\nabla\\\\cdot {u^\\\\varepsilon } = 0,}&{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\n\\\\end{array} \\\\hfill \\\\\\\\begin{array}{*{20}{c}}\\n{n_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {n^\\\\varepsilon } - \\\\Delta {n^\\\\varepsilon } =- \\\\nabla\\\\cdot ({n^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon }),}&{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{c_t^\\\\varepsilon+ {u^\\\\varepsilon } \\\\cdot \\\\nabla {c^\\\\varepsilon } - \\\\Delta {c^\\\\varepsilon } = \\\\nabla\\\\cdot ({c^\\\\varepsilon }\\\\nabla {\\\\phi ^\\\\varepsilon }),}&{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\n\\\\end{array} \\\\hfill \\\\\\\\begin{array}{*{20}{c}}\\n{{\\\\varepsilon ^{ - 1}}\\\\phi _t^\\\\varepsilon= \\\\Delta {\\\\phi ^\\\\varepsilon } - {n^\\\\varepsilon } + {c^\\\\varepsilon },}&{in{\\\\text{ }}{\\\\mathbb{R}^3} \\\\times (0,\\\\infty )} \\\\\\\\ \\n{({u^\\\\varepsilon },{n^\\\\varepsilon },{c^\\\\varepsilon },{\\\\phi ^\\\\varepsilon })\\\\left| {_{t = 0 = ({u_0},{n_0},{c_0},{\\\\phi _0})},} \\\\right.}&{in{\\\\text{ }}{\\\\mathbb{R}^3}} \\n\\\\end{array} \\\\hfill \\\\\\\\ \\n\\\\end{gathered}\\\\right.$$</span></div></div><p> involving with a positive, large parameter <i>ϵ</i>. The present work show a case that (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) stabilizes to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>):= (<i>u, n, c</i>) uniformly with respect to the time variable as <i>ϵ</i> → + ∞ with respect to the strong topology in a certain Fourier-Herz space.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 1\",\"pages\":\"241 - 268\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1119-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1119-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics
In this paper, we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations. That is, the paper deals with a singular limit problem of
involving with a positive, large parameter ϵ. The present work show a case that (uϵ, nϵ, cϵ) stabilizes to (u∞, n∞, c∞):= (u, n, c) uniformly with respect to the time variable as ϵ → + ∞ with respect to the strong topology in a certain Fourier-Herz space.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.