{"title":"带投资比例的扰动复合泊松风险模型","authors":"Nai-dan Deng, Chun-wei Wang, Jia-en Xu","doi":"10.1007/s10255-024-1102-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"109 - 128"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Perturbed Compound Poisson Risk Model with Proportional Investment\",\"authors\":\"Nai-dan Deng, Chun-wei Wang, Jia-en Xu\",\"doi\":\"10.1007/s10255-024-1102-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 1\",\"pages\":\"109 - 128\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1102-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1102-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Perturbed Compound Poisson Risk Model with Proportional Investment
In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.