带投资比例的扰动复合泊松风险模型

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1102-y
Nai-dan Deng, Chun-wei Wang, Jia-en Xu
{"title":"带投资比例的扰动复合泊松风险模型","authors":"Nai-dan Deng,&nbsp;Chun-wei Wang,&nbsp;Jia-en Xu","doi":"10.1007/s10255-024-1102-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Perturbed Compound Poisson Risk Model with Proportional Investment\",\"authors\":\"Nai-dan Deng,&nbsp;Chun-wei Wang,&nbsp;Jia-en Xu\",\"doi\":\"10.1007/s10255-024-1102-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1102-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1102-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,保险公司将风险投资和无风险投资的比例保持不变。盈余过程受到扩散的扰动。首先,推导出预期贴现红利支付和 Gerber-Shiu 函数所满足的微分方程。然后,通过 sinc 方法求得整微分方程的近似解。最后,举例说明了当债权规模遵循不同分布时的数值计算。此外,在一个特例中讨论了显式解和数值解之间的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Perturbed Compound Poisson Risk Model with Proportional Investment

In this paper, the insurance company considers venture capital and risk-free investment in a constant proportion. The surplus process is perturbed by diffusion. At first, the integro-differential equations satisfied by the expected discounted dividend payments and the Gerber-Shiu function are derived. Then, the approximate solutions of the integro-differential equations are obtained through the sinc method. Finally, the numerical examples are given when the claim sizes follow different distributions. Furthermore, the errors between the explicit solution and the numerical solution are discussed in a special case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信