分数基尔霍夫系统正解的存在性

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1111-x
Peng-fei Li, Jun-hui Xie, Dan Mu
{"title":"分数基尔霍夫系统正解的存在性","authors":"Peng-fei Li,&nbsp;Jun-hui Xie,&nbsp;Dan Mu","doi":"10.1007/s10255-024-1111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let Ω be a bounded smooth domain in ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 3). Assuming that 0 &lt; <i>s</i> &lt; 1, <span>\\(1 &lt; p,q \\le {{N + 2s} \\over {N - 2s}}\\)</span> with <span>\\((p,q) \\ne ({{N + 2s} \\over {N - 2s}},{{N + 2s} \\over {N - 2s}})\\)</span>, and <i>a, b</i> &gt; 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,</p><div><div><span>$$\\left\\{{\\matrix{{(a + b[u]_s^2){{(- \\Delta)}^s}u = {v^p} + {h_1}(x,u,v,\\nabla u,\\nabla v),} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {{{(- \\Delta)}^s}v = {u^q} + {h_2}(x,u,v,\\nabla u,\\nabla v),} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {u,v &gt; 0,} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {u = v = 0,} \\hfill &amp; {x \\in {\\mathbb{R}^N}\\backslash \\Omega.} \\hfill \\cr}}\\right.$$</span></div></div><p>Under some assumptions of <i>h</i><sub><i>i</i></sub>(<i>x, u, v</i>, ∇<i>u</i>, ∇<i>v</i>)(<i>i</i> = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Positive Solutions to a Fractional-Kirchhoff System\",\"authors\":\"Peng-fei Li,&nbsp;Jun-hui Xie,&nbsp;Dan Mu\",\"doi\":\"10.1007/s10255-024-1111-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Ω be a bounded smooth domain in ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 3). Assuming that 0 &lt; <i>s</i> &lt; 1, <span>\\\\(1 &lt; p,q \\\\le {{N + 2s} \\\\over {N - 2s}}\\\\)</span> with <span>\\\\((p,q) \\\\ne ({{N + 2s} \\\\over {N - 2s}},{{N + 2s} \\\\over {N - 2s}})\\\\)</span>, and <i>a, b</i> &gt; 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,</p><div><div><span>$$\\\\left\\\\{{\\\\matrix{{(a + b[u]_s^2){{(- \\\\Delta)}^s}u = {v^p} + {h_1}(x,u,v,\\\\nabla u,\\\\nabla v),} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {{{(- \\\\Delta)}^s}v = {u^q} + {h_2}(x,u,v,\\\\nabla u,\\\\nabla v),} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {u,v &gt; 0,} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {u = v = 0,} \\\\hfill &amp; {x \\\\in {\\\\mathbb{R}^N}\\\\backslash \\\\Omega.} \\\\hfill \\\\cr}}\\\\right.$$</span></div></div><p>Under some assumptions of <i>h</i><sub><i>i</i></sub>(<i>x, u, v</i>, ∇<i>u</i>, ∇<i>v</i>)(<i>i</i> = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1111-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1111-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 Ω 是 ℝN 中的有界光滑域(N ≥ 3)。假设 0 < s < 1, \(1 < p,q \le {{N + 2s}\over {N - 2s}}\) with \((p,q) \ne ({{N + 2s}\over {N - 2s}},{{N + 2s}\over {N - 2s}})\), and a, b >;0 是常数,我们考虑下面一类分数椭圆系统正解的存在性结果,$$\left\{{(a + b[u]_s^2){{(- \Delta)}^s}u = {v^p}+ {h_1}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {{(- \Delta)}^s}v = {u^q}+ {h_2}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill\cr {u,v > 0,} \hfill & {x \in \Omega,} \hfill\cr {u = v = 0,} \hfill & {x \in {mathbb{R}^N}\backslash \Omega.}。\在对 hi(x,u,v,∇u,∇v)(i=1,2)的一些假设下,我们通过炸毁法和重定标论证得到了问题(1.1)正解的先验边界。基于这些估计和度理论,我们建立了问题 (1.1) 的正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Existence of Positive Solutions to a Fractional-Kirchhoff System

Let Ω be a bounded smooth domain in ℝN (N ≥ 3). Assuming that 0 < s < 1, \(1 < p,q \le {{N + 2s} \over {N - 2s}}\) with \((p,q) \ne ({{N + 2s} \over {N - 2s}},{{N + 2s} \over {N - 2s}})\), and a, b > 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,

$$\left\{{\matrix{{(a + b[u]_s^2){{(- \Delta)}^s}u = {v^p} + {h_1}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {{{(- \Delta)}^s}v = {u^q} + {h_2}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {u,v > 0,} \hfill & {x \in \Omega,} \hfill \cr {u = v = 0,} \hfill & {x \in {\mathbb{R}^N}\backslash \Omega.} \hfill \cr}}\right.$$

Under some assumptions of hi(x, u, v, ∇u, ∇v)(i = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信