分数基尔霍夫系统正解的存在性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Peng-fei Li, Jun-hui Xie, Dan Mu
{"title":"分数基尔霍夫系统正解的存在性","authors":"Peng-fei Li,&nbsp;Jun-hui Xie,&nbsp;Dan Mu","doi":"10.1007/s10255-024-1111-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let Ω be a bounded smooth domain in ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 3). Assuming that 0 &lt; <i>s</i> &lt; 1, <span>\\(1 &lt; p,q \\le {{N + 2s} \\over {N - 2s}}\\)</span> with <span>\\((p,q) \\ne ({{N + 2s} \\over {N - 2s}},{{N + 2s} \\over {N - 2s}})\\)</span>, and <i>a, b</i> &gt; 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,</p><div><div><span>$$\\left\\{{\\matrix{{(a + b[u]_s^2){{(- \\Delta)}^s}u = {v^p} + {h_1}(x,u,v,\\nabla u,\\nabla v),} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {{{(- \\Delta)}^s}v = {u^q} + {h_2}(x,u,v,\\nabla u,\\nabla v),} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {u,v &gt; 0,} \\hfill &amp; {x \\in \\Omega,} \\hfill \\cr {u = v = 0,} \\hfill &amp; {x \\in {\\mathbb{R}^N}\\backslash \\Omega.} \\hfill \\cr}}\\right.$$</span></div></div><p>Under some assumptions of <i>h</i><sub><i>i</i></sub>(<i>x, u, v</i>, ∇<i>u</i>, ∇<i>v</i>)(<i>i</i> = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"225 - 240"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Positive Solutions to a Fractional-Kirchhoff System\",\"authors\":\"Peng-fei Li,&nbsp;Jun-hui Xie,&nbsp;Dan Mu\",\"doi\":\"10.1007/s10255-024-1111-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Ω be a bounded smooth domain in ℝ<sup><i>N</i></sup> (<i>N</i> ≥ 3). Assuming that 0 &lt; <i>s</i> &lt; 1, <span>\\\\(1 &lt; p,q \\\\le {{N + 2s} \\\\over {N - 2s}}\\\\)</span> with <span>\\\\((p,q) \\\\ne ({{N + 2s} \\\\over {N - 2s}},{{N + 2s} \\\\over {N - 2s}})\\\\)</span>, and <i>a, b</i> &gt; 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,</p><div><div><span>$$\\\\left\\\\{{\\\\matrix{{(a + b[u]_s^2){{(- \\\\Delta)}^s}u = {v^p} + {h_1}(x,u,v,\\\\nabla u,\\\\nabla v),} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {{{(- \\\\Delta)}^s}v = {u^q} + {h_2}(x,u,v,\\\\nabla u,\\\\nabla v),} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {u,v &gt; 0,} \\\\hfill &amp; {x \\\\in \\\\Omega,} \\\\hfill \\\\cr {u = v = 0,} \\\\hfill &amp; {x \\\\in {\\\\mathbb{R}^N}\\\\backslash \\\\Omega.} \\\\hfill \\\\cr}}\\\\right.$$</span></div></div><p>Under some assumptions of <i>h</i><sub><i>i</i></sub>(<i>x, u, v</i>, ∇<i>u</i>, ∇<i>v</i>)(<i>i</i> = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 1\",\"pages\":\"225 - 240\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1111-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1111-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设 Ω 是 ℝN 中的有界光滑域(N ≥ 3)。假设 0 < s < 1, \(1 < p,q \le {{N + 2s}\over {N - 2s}}\) with \((p,q) \ne ({{N + 2s}\over {N - 2s}},{{N + 2s}\over {N - 2s}})\), and a, b >;0 是常数,我们考虑下面一类分数椭圆系统正解的存在性结果,$$\left\{{(a + b[u]_s^2){{(- \Delta)}^s}u = {v^p}+ {h_1}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {{(- \Delta)}^s}v = {u^q}+ {h_2}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill\cr {u,v > 0,} \hfill & {x \in \Omega,} \hfill\cr {u = v = 0,} \hfill & {x \in {mathbb{R}^N}\backslash \Omega.}。\在对 hi(x,u,v,∇u,∇v)(i=1,2)的一些假设下,我们通过炸毁法和重定标论证得到了问题(1.1)正解的先验边界。基于这些估计和度理论,我们建立了问题 (1.1) 的正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Positive Solutions to a Fractional-Kirchhoff System

Let Ω be a bounded smooth domain in ℝN (N ≥ 3). Assuming that 0 < s < 1, \(1 < p,q \le {{N + 2s} \over {N - 2s}}\) with \((p,q) \ne ({{N + 2s} \over {N - 2s}},{{N + 2s} \over {N - 2s}})\), and a, b > 0 are constants, we consider the existence results for positive solutions of a class of fractional elliptic system below,

$$\left\{{\matrix{{(a + b[u]_s^2){{(- \Delta)}^s}u = {v^p} + {h_1}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {{{(- \Delta)}^s}v = {u^q} + {h_2}(x,u,v,\nabla u,\nabla v),} \hfill & {x \in \Omega,} \hfill \cr {u,v > 0,} \hfill & {x \in \Omega,} \hfill \cr {u = v = 0,} \hfill & {x \in {\mathbb{R}^N}\backslash \Omega.} \hfill \cr}}\right.$$

Under some assumptions of hi(x, u, v, ∇u, ∇v)(i = 1, 2), we get a priori bounds of the positive solutions to the problem (1.1) by the blow-up methods and rescaling argument. Based on these estimates and degree theory, we establish the existence of positive solutions to problem (1.1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信