三维剪切增稠流体全局规则性的几何约束

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Jia-qi Yang
{"title":"三维剪切增稠流体全局规则性的几何约束","authors":"Jia-qi Yang","doi":"10.1007/s10255-024-1114-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is <span>\\({{11 - 5p} \\over 2}\\)</span>-Hölder continuous with respect to the space variables when <span>\\(2 &lt; p &lt; {{11} \\over 5}\\)</span>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":"205 - 210"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Constraints for Global Regularity of 3D Shear Thickening Fluids\",\"authors\":\"Jia-qi Yang\",\"doi\":\"10.1007/s10255-024-1114-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is <span>\\\\({{11 - 5p} \\\\over 2}\\\\)</span>-Hölder continuous with respect to the space variables when <span>\\\\(2 &lt; p &lt; {{11} \\\\over 5}\\\\)</span>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 1\",\"pages\":\"205 - 210\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1114-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1114-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了涡度方向与三维剪切增稠流体的全局正则性之间的关系。研究表明,如果涡度方向相对于空间变量是 \(2 < p < {{11}\over 5}\)-Hölder 连续的,则整个空间的非牛顿不可压缩流体的弱解是强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Constraints for Global Regularity of 3D Shear Thickening Fluids

We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is \({{11 - 5p} \over 2}\)-Hölder continuous with respect to the space variables when \(2 < p < {{11} \over 5}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信