{"title":"三维剪切增稠流体全局规则性的几何约束","authors":"Jia-qi Yang","doi":"10.1007/s10255-024-1114-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is <span>\\({{11 - 5p} \\over 2}\\)</span>-Hölder continuous with respect to the space variables when <span>\\(2 < p < {{11} \\over 5}\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Constraints for Global Regularity of 3D Shear Thickening Fluids\",\"authors\":\"Jia-qi Yang\",\"doi\":\"10.1007/s10255-024-1114-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is <span>\\\\({{11 - 5p} \\\\over 2}\\\\)</span>-Hölder continuous with respect to the space variables when <span>\\\\(2 < p < {{11} \\\\over 5}\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1114-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1114-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了涡度方向与三维剪切增稠流体的全局正则性之间的关系。研究表明,如果涡度方向相对于空间变量是 \(2 < p < {{11}\over 5}\)-Hölder 连续的,则整个空间的非牛顿不可压缩流体的弱解是强解。
Geometric Constraints for Global Regularity of 3D Shear Thickening Fluids
We consider the relation between the direction of the vorticity and the global regularity of 3D shear thickening fluids. It is showed that a weak solution to the non-Newtonian incompressible fluid in the whole space is strong if the direction of the vorticity is \({{11 - 5p} \over 2}\)-Hölder continuous with respect to the space variables when \(2 < p < {{11} \over 5}\).