二元函数数据聚类

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Shi-yun Cao, Yan-qiu Zhou, Yan-ling Wan, Tao Zhang
{"title":"二元函数数据聚类","authors":"Shi-yun Cao,&nbsp;Yan-qiu Zhou,&nbsp;Yan-ling Wan,&nbsp;Tao Zhang","doi":"10.1007/s10255-024-1116-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The <i>k</i>-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, <i>k</i>-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"613 - 629"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering for Bivariate Functional Data\",\"authors\":\"Shi-yun Cao,&nbsp;Yan-qiu Zhou,&nbsp;Yan-ling Wan,&nbsp;Tao Zhang\",\"doi\":\"10.1007/s10255-024-1116-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The <i>k</i>-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, <i>k</i>-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"613 - 629\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1116-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1116-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了二元功能数据的聚类问题,其中每个随机曲面由每个受试者重复记录的一组曲线组成。针对双变量功能数据,我们提出了基于边际功能主成分分析的 k-centres 曲面聚类方法,并提出了一种新的聚类标准,即同时考虑随机曲面及其在两个方向上的偏导数函数。此外,我们还考虑了另外两种聚类方法,即基于乘积函数主成分分析或双函数主成分分析的 k 中心曲面聚类方法。仿真结果表明,所提出的方法在正确分类率和调整后兰德指数方面都有不错的表现。通过对人类死亡率数据的实证分析,进一步说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering for Bivariate Functional Data

In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The k-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, k-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信