二元函数数据聚类

Pub Date : 2024-01-03 DOI:10.1007/s10255-024-1116-5
Shi-yun Cao, Yan-qiu Zhou, Yan-ling Wan, Tao Zhang
{"title":"二元函数数据聚类","authors":"Shi-yun Cao,&nbsp;Yan-qiu Zhou,&nbsp;Yan-ling Wan,&nbsp;Tao Zhang","doi":"10.1007/s10255-024-1116-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The <i>k</i>-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, <i>k</i>-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering for Bivariate Functional Data\",\"authors\":\"Shi-yun Cao,&nbsp;Yan-qiu Zhou,&nbsp;Yan-ling Wan,&nbsp;Tao Zhang\",\"doi\":\"10.1007/s10255-024-1116-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The <i>k</i>-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, <i>k</i>-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1116-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1116-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了二元功能数据的聚类问题,其中每个随机曲面由每个受试者重复记录的一组曲线组成。针对双变量功能数据,我们提出了基于边际功能主成分分析的 k-centres 曲面聚类方法,并提出了一种新的聚类标准,即同时考虑随机曲面及其在两个方向上的偏导数函数。此外,我们还考虑了另外两种聚类方法,即基于乘积函数主成分分析或双函数主成分分析的 k 中心曲面聚类方法。仿真结果表明,所提出的方法在正确分类率和调整后兰德指数方面都有不错的表现。通过对人类死亡率数据的实证分析,进一步说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Clustering for Bivariate Functional Data

In this paper, we consider the clustering of bivariate functional data where each random surface consists of a set of curves recorded repeatedly for each subject. The k-centres surface clustering method based on marginal functional principal component analysis is proposed for the bivariate functional data, and a novel clustering criterion is presented where both the random surface and its partial derivative function in two directions are considered. In addition, we also consider two other clustering methods, k-centres surface clustering methods based on product functional principal component analysis or double functional principal component analysis. Simulation results indicate that the proposed methods have a nice performance in terms of both the correct classification rate and the adjusted rand index. The approaches are further illustrated through empirical analysis of human mortality data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信