{"title":"使用无创抽吸装置评估乳房皮肤和组织硬度以及临床预测因素的影响。","authors":"Martha Duraes, Noemie Briot, Nathanael Connesson, Gregory Chagnon, Yohan Payan, Claire Duflos, Gauthier Rathat, Guillaume Captier, Gerard Subsol, Christian Herlin","doi":"10.1002/ca.24134","DOIUrl":null,"url":null,"abstract":"<p>A personalized 3D breast model could present a real benefit for preoperative discussion with patients, surgical planning, and guidance. Breast tissue biomechanical properties have been poorly studied in vivo, although they are important for breast deformation simulation. The main objective of our study was to determine breast skin thickness and breast skin and adipose/fibroglandular tissue stiffness. The secondary objective was to assess clinical predictors of elasticity and thickness: age, smoking status, body mass index, contraception, pregnancies, breastfeeding, menopausal status, history of radiotherapy or breast surgery. Participants were included at the Montpellier University Breast Surgery Department from March to May 2022. Breast skin thickness was measured by ultrasonography, breast skin and adipose/fibroglandular tissue stiffnesses were determined with a VLASTIC non-invasive aspiration device at three different sites (breast segments I–III). Multivariable linear models were used to assess clinical predictors of elasticity and thickness. In this cohort of 196 women, the mean breast skin and adipose/fibroglandular tissue stiffness values were 39 and 3 kPa, respectively. The mean breast skin thickness was 1.83 mm. Only menopausal status was significantly correlated with breast skin thickness and adipose/fibroglandular tissue stiffness. The next step will be to implement these stiffness and thickness values in a biomechanical breast model and to evaluate its capacity to predict breast tissue deformations.</p>","PeriodicalId":50687,"journal":{"name":"Clinical Anatomy","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ca.24134","citationCount":"0","resultStr":"{\"title\":\"Evaluation of breast skin and tissue stiffness using a non-invasive aspiration device and impact of clinical predictors\",\"authors\":\"Martha Duraes, Noemie Briot, Nathanael Connesson, Gregory Chagnon, Yohan Payan, Claire Duflos, Gauthier Rathat, Guillaume Captier, Gerard Subsol, Christian Herlin\",\"doi\":\"10.1002/ca.24134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A personalized 3D breast model could present a real benefit for preoperative discussion with patients, surgical planning, and guidance. Breast tissue biomechanical properties have been poorly studied in vivo, although they are important for breast deformation simulation. The main objective of our study was to determine breast skin thickness and breast skin and adipose/fibroglandular tissue stiffness. The secondary objective was to assess clinical predictors of elasticity and thickness: age, smoking status, body mass index, contraception, pregnancies, breastfeeding, menopausal status, history of radiotherapy or breast surgery. Participants were included at the Montpellier University Breast Surgery Department from March to May 2022. Breast skin thickness was measured by ultrasonography, breast skin and adipose/fibroglandular tissue stiffnesses were determined with a VLASTIC non-invasive aspiration device at three different sites (breast segments I–III). Multivariable linear models were used to assess clinical predictors of elasticity and thickness. In this cohort of 196 women, the mean breast skin and adipose/fibroglandular tissue stiffness values were 39 and 3 kPa, respectively. The mean breast skin thickness was 1.83 mm. Only menopausal status was significantly correlated with breast skin thickness and adipose/fibroglandular tissue stiffness. The next step will be to implement these stiffness and thickness values in a biomechanical breast model and to evaluate its capacity to predict breast tissue deformations.</p>\",\"PeriodicalId\":50687,\"journal\":{\"name\":\"Clinical Anatomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ca.24134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ca.24134\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Anatomy","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ca.24134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Evaluation of breast skin and tissue stiffness using a non-invasive aspiration device and impact of clinical predictors
A personalized 3D breast model could present a real benefit for preoperative discussion with patients, surgical planning, and guidance. Breast tissue biomechanical properties have been poorly studied in vivo, although they are important for breast deformation simulation. The main objective of our study was to determine breast skin thickness and breast skin and adipose/fibroglandular tissue stiffness. The secondary objective was to assess clinical predictors of elasticity and thickness: age, smoking status, body mass index, contraception, pregnancies, breastfeeding, menopausal status, history of radiotherapy or breast surgery. Participants were included at the Montpellier University Breast Surgery Department from March to May 2022. Breast skin thickness was measured by ultrasonography, breast skin and adipose/fibroglandular tissue stiffnesses were determined with a VLASTIC non-invasive aspiration device at three different sites (breast segments I–III). Multivariable linear models were used to assess clinical predictors of elasticity and thickness. In this cohort of 196 women, the mean breast skin and adipose/fibroglandular tissue stiffness values were 39 and 3 kPa, respectively. The mean breast skin thickness was 1.83 mm. Only menopausal status was significantly correlated with breast skin thickness and adipose/fibroglandular tissue stiffness. The next step will be to implement these stiffness and thickness values in a biomechanical breast model and to evaluate its capacity to predict breast tissue deformations.
期刊介绍:
Clinical Anatomy is the Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists. The goal of Clinical Anatomy is to provide a medium for the exchange of current information between anatomists and clinicians. This journal embraces anatomy in all its aspects as applied to medical practice. Furthermore, the journal assists physicians and other health care providers in keeping abreast of new methodologies for patient management and informs educators of new developments in clinical anatomy and teaching techniques. Clinical Anatomy publishes original and review articles of scientific, clinical, and educational interest. Papers covering the application of anatomic principles to the solution of clinical problems and/or the application of clinical observations to expand anatomic knowledge are welcomed.