Andrew Kowalski, Jill Lykon, Benjamin Diamond, David G Coffey, Marcella Kaddoura, Francesco Maura, James E Hoffman, Dickran Kazandjian, Ola Landgren
{"title":"预防与 T 细胞激活癌症疗法相关的免疫毒性的新策略。","authors":"Andrew Kowalski, Jill Lykon, Benjamin Diamond, David G Coffey, Marcella Kaddoura, Francesco Maura, James E Hoffman, Dickran Kazandjian, Ola Landgren","doi":"10.1158/2643-3230.BCD-23-0228","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Immune-related toxicities including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are common side effects of bispecific antibody and chimeric antigen receptor (CAR) T-cell therapies of hematologic malignancies. As anti-inflammatory therapy (the standard of care) is variably effective in mitigating these toxicities after onset, here we discuss emerging evidence for shifting the strategy from mitigation to prevention.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":" ","pages":"90-94"},"PeriodicalIF":11.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging Strategies for the Prevention of Immune Toxicities Associated with T cell-Engaging Cancer Therapies.\",\"authors\":\"Andrew Kowalski, Jill Lykon, Benjamin Diamond, David G Coffey, Marcella Kaddoura, Francesco Maura, James E Hoffman, Dickran Kazandjian, Ola Landgren\",\"doi\":\"10.1158/2643-3230.BCD-23-0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Immune-related toxicities including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are common side effects of bispecific antibody and chimeric antigen receptor (CAR) T-cell therapies of hematologic malignancies. As anti-inflammatory therapy (the standard of care) is variably effective in mitigating these toxicities after onset, here we discuss emerging evidence for shifting the strategy from mitigation to prevention.</p>\",\"PeriodicalId\":29944,\"journal\":{\"name\":\"Blood Cancer Discovery\",\"volume\":\" \",\"pages\":\"90-94\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Cancer Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2643-3230.BCD-23-0228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-23-0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Emerging Strategies for the Prevention of Immune Toxicities Associated with T cell-Engaging Cancer Therapies.
Summary: Immune-related toxicities including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are common side effects of bispecific antibody and chimeric antigen receptor (CAR) T-cell therapies of hematologic malignancies. As anti-inflammatory therapy (the standard of care) is variably effective in mitigating these toxicities after onset, here we discuss emerging evidence for shifting the strategy from mitigation to prevention.
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.